scispace - formally typeset
Search or ask a question
Author

Ernst Detlef Schulze

Other affiliations: University of Idaho, University of Utah, University of Würzburg  ...read more
Bio: Ernst Detlef Schulze is an academic researcher from Max Planck Society. The author has contributed to research in topics: Biodiversity & Ecosystem. The author has an hindex of 133, co-authored 670 publications receiving 69504 citations. Previous affiliations of Ernst Detlef Schulze include University of Idaho & University of Utah.


Papers
More filters
Journal ArticleDOI
TL;DR: Comparing EA and uneven-aged forest management in Central European beech forests shows that a mosaic of different age-classes is more important for regional biodiversity than high within-stand heterogeneity, and suggests reconsidering the current trend of replacing even-aged management in temperate forests.
Abstract: For managed temperate forests, conservationists and policymakers favour fine-grained uneven-aged (UEA) management over more traditional coarse-grained even-aged (EA) management, based on the assumption that within-stand habitat heterogeneity enhances biodiversity. There is, however, little empirical evidence to support this assumption. We investigated for the first time how differently grained forest management systems affect the biodiversity of multiple above- and below-ground taxa across spatial scales. We sampled 15 taxa of animals, plants, fungi and bacteria within the largest contiguous beech forest landscape of Germany and classified them into functional groups. Selected forest stands have been managed for more than a century at different spatial grains. The EA (coarse-grained management) and UEA (fine-grained) forests are comparable in spatial arrangement, climate and soil conditions. These were compared to forests of a nearby national park that have been unmanaged for at least 20 years. We used diversity accumulation curves to compare γ-diversity for Hill numbers 0D (species richness), 1D (Shannon diversity) and 2D (Simpson diversity) between the management systems. Beta diversity was quantified as multiple-site dissimilarity. Gamma diversity was higher in EA than in UEA forests for at least one of the three Hill numbers for six taxa (up to 77%), while eight showed no difference. Only bacteria showed the opposite pattern. Higher γ-diversity in EA forests was also found for forest specialists and saproxylic beetles. Between-stand β-diversity was higher in EA than in UEA forests for one-third (all species) and half (forest specialists) of all taxa, driven by environmental heterogeneity between age-classes, while α-diversity showed no directional response across taxa or for forest specialists. Synthesis and applications. Comparing EA and uneven-aged forest management in Central European beech forests, our results show that a mosaic of different age-classes is more important for regional biodiversity than high within-stand heterogeneity. We suggest reconsidering the current trend of replacing even-aged management in temperate forests. Instead, the variability of stages and stand structures should be increased to promote landscape-scale biodiversity.

191 citations

Journal ArticleDOI
TL;DR: In this article, the authors measured the net CO2 exchange (NEE) over ecosystems differing in land use (forest and agriculture) in Thuringia, Germany, and found that large contrasts were found in NEE rates between the land uses of the ecosystems.
Abstract: Eddy covariance was used to measure the net CO2 exchange (NEE) over ecosystems differing in land use (forest and agriculture) in Thuringia, Germany. Measurements were carried out at a managed, even-aged European beech stand (Fagus sylvatica, 70–150 years old), an unmanaged, uneven-aged mixed beech stand in a late stage of development (F. sylvatica, Fraxinus excelsior, Acer pseudoplantanus, and other hardwood trees, 0–250 years old), a managed young Norway spruce stand (Picea abies, 50 years old), and an agricultural field growing winter wheat in 2001, and potato in 2002. Large contrasts were found in NEE rates between the land uses of the ecosystems. The managed and unmanaged beech sites had very similar net CO2 uptake rates (�� 480 to � 500 g C m � 2 yr � 1 ). Main differences in seasonal NEE patterns between the beech sites were because of a later leaf emergence and higher maximum leaf area index at the unmanaged beech site, probably as a result of the species mix at the site. In contrast, the spruce stand had a higher CO2 uptake in spring but substantially lower net CO2 uptake in summer than the beech stands. This resulted in a near neutral annual NEE (� 4gCm � 2 yr � 1 ), mainly attributable to an ecosystem respiration rate almost twice as high as that of the beech stands, despite slightly lower temperatures, because of the higher elevation. Crops in the agricultural field had high CO2 uptake rates, but growing season length was short compared with the forest ecosystems. Therefore, the agricultural land had low-to-moderate annual net CO2 uptake (� 34 to � 193 g C m � 2 ), but with annual harvest taken into account it will be a source of CO2 ( 1 97 to 1 386 g C m � 2 ). The

190 citations

Journal ArticleDOI
TL;DR: Water stress appeared to increase slightly the proportion of bound water (B) and the bulk modulus of elasticity (e) of the grass leaves, but it did not alter the relative water content at zero turgor (RWC0) or the ratio of turgid water content to dry weight of the tissue.
Abstract: Three tropical grasses, green panic (Panicum maximum var, trichoglume), spear grass (Heteropogon contortus) and buffel grass (Cenchrus ciliaris) and the tropical legume siratro (Macroptilium atropurpureum), were grown in plots in a semi-arid field environment. The water relations characteristics of leaves from plants subjected to a soil drying cycle were compared with those of unstressed leaves from plants in irrigated plots. Minimum water potentials attained in the stressed leaves were c. -44, - 38, - 33 and - 13 bar for the four species, respectively. The grass leaves adjusted osmotically to water stress, apparently through accumulation of solutes, so that there was a decrease in osmotic potential at full turgor (Ψπ100) of 5.5, 3.9 and 7.1 bar, and in water potential at zero turgor (Ψ0) of 8.6, 6.5 and 8.6 bar for green panic, spear grass and buffel respectively. Water stress appeared to increase slightly the proportion of bound water (B) and the bulk modulus of elasticity (e) of the grass leaves, but it did not alter the relative water content at zero turgor (RWC0) or the ratio of turgid water content to dry weight of the tissue. The Ψπ100 and Ψ0 of stressed siratro leaves decreased by 2.5-4 bar and 3-5 bar respectively when subjected to soil drying cycles. These changes could be explained by the marked decrease in the ratio of turgid water content to dry weight of the leaf tissue rather than by accumulation of solutes. The values of RWC0 and e for siratro leaves were not altered by stress but, in contrast to the grasses, B was apparently decreased although the data exhibited high variability. Adjustments in Ψπ100 and Ψ0 of stressed leaves of buffel grass and siratro were largely lost within 10 days of rewatering.

186 citations

Journal ArticleDOI
TL;DR: In this paper, the past, present and future of terrestrial carbon fluxes with focus on photosynthesis, respiration, primary-, ecosystem-, and biome-productivity are reviewed.
Abstract: . This lecture reviews the past (since 1964 when the International Biological Program began) and the future of our understanding of terrestrial carbon fluxes with focus on photosynthesis, respiration, primary-, ecosystem-, and biome-productivity. Photosynthetic capacity is related to the nitrogen concentration of leaves, but the capacity is only rarely reached under field conditions. Average rates of photosynthesis and stomatal conductance are closely correlated and operate near 50% of their maximal rate, with light being the limiting factor in humid regions and air humidity and soil water the limiting factor in arid climates. Leaf area is the main factor to extrapolate from leaves to canopies, with maximum surface conductance being dependent on leaf level stomatal conductance. Additionally, gas exchange depends also on rooting depth which determines the water and nutrient availability and on mycorrhizae which regulate the nutrient status. An important anthropogenic disturbance is the nitrogen uptake from air pollutants, which is not balanced by cation uptake from roots and this may lead to damage and breakdown of the plant cover. Photosynthesis is the main carbon input into ecosystems, but it alone does not represent the ecosystem carbon balance, which is determined by respiration of various kinds. Plant respiration and photosynthesis determine growth (net primary production) and microbial respiration balances the net ecosystem flux. In a spruce forest, 30% of the assimilatory carbon gain is used for respiration of needles, 20% is used for respiration in stems. Soil respiration is about 50% the carbon gain, half of which is root respiration, half is microbial respiration. In addition, disturbances lead to carbon losses, where fire, harvest and grazing bypass the chain of respiration. In total, the carbon balance at the biome level is only about 1% of the photosynthetic carbon input, or may indeed become negative. The recent observed increase in plant growth has different reasons depending on the region of the world: anthropogenic nitrogen deposition is the controlling factor in Europe, increasing global temperatures is the main factor in Siberia, and maybe rising CO2 the factor controlling the carbon fluxes in Amazonia. However, this has not lead to increases in net biome productivity, due to associated losses. Also important is the interaction between biodiversity and biogeochemical processes. It is shown that net primary productivity increases with plant species diversity (50% species loss equals 20% loss in productivity). However, in this extrapolation the action of soil biota is poorly understood although soils contribute the largest number of species and of taxonomic groups to an ecosystem. The global terrestrial carbon budget strongly depends on areas with pristine old growth forests which are carbon sinks. The management options are very limited, mostly short term, and usually associated with high uncertainty. Unmanaged grasslands appear to be a carbon sink of similar magnitude as forest, but generally these ecosystems lost their C with grazing and agricultural use. Extrapolation to the future of Earth climate shows that the biota will not be able to balance fossil fuel emissions, and that it will be essential to develop a carbon free energy system in order to maintain the living conditions on earth.

184 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
TL;DR: Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.
Abstract: Humans are altering the composition of biological communities through a variety of activities that increase rates of species invasions and species extinctions, at all scales, from local to global. These changes in components of the Earth's biodiversity cause concern for ethical and aesthetic reasons, but they also have a strong potential to alter ecosystem properties and the goods and services they provide to humanity. Ecological experiments, observations, and theoretical developments show that ecosystem properties depend greatly on biodiversity in terms of the functional characteristics of organisms present in the ecosystem and the distribution and abundance of those organisms over space and time. Species effects act in concert with the effects of climate, resource availability, and disturbance regimes in influencing ecosystem properties. Human activities can modify all of the above factors; here we focus on modification of these biotic controls. The scientific community has come to a broad consensus on many aspects of the re- lationship between biodiversity and ecosystem functioning, including many points relevant to management of ecosystems. Further progress will require integration of knowledge about biotic and abiotic controls on ecosystem properties, how ecological communities are struc- tured, and the forces driving species extinctions and invasions. To strengthen links to policy and management, we also need to integrate our ecological knowledge with understanding of the social and economic constraints of potential management practices. Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.

6,891 citations

Journal ArticleDOI
08 Aug 2002-Nature
TL;DR: A doubling in global food demand projected for the next 50 years poses huge challenges for the sustainability both of food production and of terrestrial and aquatic ecosystems and the services they provide to society.
Abstract: A doubling in global food demand projected for the next 50 years poses huge challenges for the sustainability both of food production and of terrestrial and aquatic ecosystems and the services they provide to society. Agriculturalists are the principal managers of global useable lands and will shape, perhaps irreversibly, the surface of the Earth in the coming decades. New incentives and policies for ensuring the sustainability of agriculture and ecosystem services will be crucial if we are to meet the demands of improving yields without compromising environmental integrity or public health.

6,569 citations

Journal ArticleDOI
22 Apr 2004-Nature
TL;DR: Reliable quantification of the leaf economics spectrum and its interaction with climate will prove valuable for modelling nutrient fluxes and vegetation boundaries under changing land-use and climate.
Abstract: Bringing together leaf trait data spanning 2,548 species and 175 sites we describe, for the first time at global scale, a universal spectrum of leaf economics consisting of key chemical, structural and physiological properties. The spectrum runs from quick to slow return on investments of nutrients and dry mass in leaves, and operates largely independently of growth form, plant functional type or biome. Categories along the spectrum would, in general, describe leaf economic variation at the global scale better than plant functional types, because functional types overlap substantially in their leaf traits. Overall, modulation of leaf traits and trait relationships by climate is surprisingly modest, although some striking and significant patterns can be seen. Reliable quantification of the leaf economics spectrum and its interaction with climate will prove valuable for modelling nutrient fluxes and vegetation boundaries under changing land-use and climate.

6,360 citations

Journal ArticleDOI
01 Jan 1989
TL;DR: In this article, the physical and enzymatic bases of carbone isotope discrimination during photosynthesis were discussed, noting how knowledge of discrimination can be used to provide additional insight into photosynthetic metabolism and the environmental influences on that process.
Abstract: We discuss the physical and enzymatic bases of carbone isotope discrimination during photosynthesis, noting how knowledge of discrimination can be used to provide additional insight into photosynthetic metabolism and the environmental influences on that process

6,246 citations