scispace - formally typeset
Search or ask a question
Author

Ernst J. Wolvetang

Bio: Ernst J. Wolvetang is an academic researcher from University of Queensland. The author has contributed to research in topics: Induced pluripotent stem cell & Embryonic stem cell. The author has an hindex of 50, co-authored 165 publications receiving 14428 citations. Previous affiliations of Ernst J. Wolvetang include Hudson Institute & Monash Institute of Medical Research.


Papers
More filters
Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations

Journal ArticleDOI
27 Mar 2014-Nature
TL;DR: For example, the authors mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body.
Abstract: Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body We find that few genes are truly 'housekeeping', whereas many mammalian promoters are composite entities composed of several closely separated TSSs, with independent cell-type-specific expression profiles TSSs specific to different cell types evolve at different rates, whereas promoters of broadly expressed genes are the most conserved Promoter-based expression analysis reveals key transcription factors defining cell states and links them to binding-site motifs The functions of identified novel transcripts can be predicted by coexpression and sample ontology enrichment analyses The functional annotation of the mammalian genome 5 (FANTOM5) project provides comprehensive expression profiles and functional annotation of mammalian cell-type-specific transcriptomes with wide applications in biomedical research

1,715 citations

Journal ArticleDOI
22 Oct 2015-Nature
TL;DR: The developmental mechanism regulating the preferential induction of collecting duct versus kidney mesenchyme progenitors is identified and kidney organoids that contain nephrons associated with a collecting duct network surrounded by renal interstitium and endothelial cells are generated.
Abstract: The human kidney contains up to 2 million epithelial nephrons responsible for blood filtration. Regenerating the kidney requires the induction of the more than 20 distinct cell types required for excretion and the regulation of pH, and electrolyte and fluid balance. We have previously described the simultaneous induction of progenitors for both collecting duct and nephrons via the directed differentiation of human pluripotent stem cells. Paradoxically, although both are of intermediate mesoderm in origin, collecting duct and nephrons have distinct temporospatial origins. Here we identify the developmental mechanism regulating the preferential induction of collecting duct versus kidney mesenchyme progenitors. Using this knowledge, we have generated kidney organoids that contain nephrons associated with a collecting duct network surrounded by renal interstitium and endothelial cells. Within these organoids, individual nephrons segment into distal and proximal tubules, early loops of Henle, and glomeruli containing podocytes elaborating foot processes and undergoing vascularization. When transcription profiles of kidney organoids were compared to human fetal tissues, they showed highest congruence with first trimester human kidney. Furthermore, the proximal tubules endocytose dextran and differentially apoptose in response to cisplatin, a nephrotoxicant. Such kidney organoids represent powerful models of the human organ for future applications, including nephrotoxicity screening, disease modelling and as a source of cells for therapy.

1,143 citations

Journal ArticleDOI
Erik Arner, Carsten O. Daub, Kristoffer Vitting-Seerup, Robin Andersson, Berit Lilje, Finn Drabløs, Andreas Lennartsson, Michelle Rönnerblad, Olga Hrydziuszko, Morana Vitezic, Tom C. Freeman, Ahmad M. N. Alhendi, Peter Arner, Richard A Axton, J Kenneth Baillie, Anthony G Beckhouse, Beatrice Bodega, James Briggs, Frank Brombacher, Margaret B. Davis, Michael Detmar, Anna Ehrlund, Mitsuhiro Endoh, Afsaneh Eslami, Michela Fagiolini, Lynsey Fairbairn, Geoffrey J. Faulkner, Carmelo Ferrai, Malcolm E. Fisher, Lesley M. Forrester, Dan Goldowitz, Reto Guler, Thomas J. Ha, Mitsuko Hara, Meenhard Herlyn, Tomokatsu Ikawa, Chieko Kai, Hiroshi Kawamoto, Levon M. Khachigian, S. Peter Klinken, Soichi Kojima, Haruhiko Koseki, Sarah Klein, Niklas Mejhert, Ken Miyaguchi, Yosuke Mizuno, Mitsuru Morimoto, Kelly J. Morris, Christine L. Mummery, Yutaka Nakachi, Soichi Ogishima, Mariko Okada-Hatakeyama, Yasushi Okazaki, Valerio Orlando, Dmitry A. Ovchinnikov, Robert Passier, Margaret Patrikakis, Ana Pombo, Xian-Yang Qin, Sugata Roy, Hiroki Sato, Suzana Savvi, Alka Saxena, Anita Schwegmann, Daisuke Sugiyama, Rolf Swoboda, Hiroshi Tanaka, Andru Tomoiu, Louise N. Winteringham, Ernst J. Wolvetang, Chiyo Yanagi-Mizuochi, Misako Yoneda, Susan E. Zabierowski, Peter G. Zhang, Imad Abugessaisa, Nicolas Bertin, Alexander D. Diehl, Shiro Fukuda, Masaaki Furuno, Jayson Harshbarger, Akira Hasegawa, Fumi Hori, Sachi Ishikawa-Kato, Yuri Ishizu, Masayoshi Itoh, Tsugumi Kawashima, Miki Kojima, Naoto Kondo, Marina Lizio, Terrence F. Meehan, Christopher J. Mungall, Mitsuyoshi Murata, Hiromi Nishiyori-Sueki, Serkan Sahin, Sayaka Nagao-Sato, Jessica Severin, Michiel J. L. de Hoon, Jun Kawai, Takeya Kasukawa, Timo Lassmann, Harukazu Suzuki, Hideya Kawaji, Kim M. Summers, Christine A. Wells, David A. Hume, Alistair R. R. Forrest, Albin Sandelin, Piero Carninci, Yoshihide Hayashizaki 
27 Feb 2015-Science
TL;DR: The data support a highly generalizable model in which enhancer transcription is the earliest event in successive waves of transcriptional change during cellular differentiation or activation.
Abstract: Although it is generally accepted that cellular differentiation requires changes to transcriptional networks, dynamic regulation of promoters and enhancers at specific sets of genes has not been previously studied en masse. Exploiting the fact that active promoters and enhancers are transcribed, we simultaneously measured their activity in 19 human and 14 mouse time courses covering a wide range of cell types and biological stimuli. Enhancer RNAs, then messenger RNAs encoding transcription factors, dominated the earliest responses. Binding sites for key lineage transcription factors were simultaneously overrepresented in enhancers and promoters active in each cellular system. Our data support a highly generalizable model in which enhancer transcription is the earliest event in successive waves of transcriptional change during cellular differentiation or activation.

526 citations

Journal ArticleDOI
TL;DR: The specific mitochondrial respiratory chain inhibitors rotenone and antimycin A and the highly specific mitochondrial ATP‐synthase inhibitor oligomycin are shown to induce an apoptotic suicide response in cultured human lymphoblastoid and other mammalian cells within 12–18 h.

404 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: There is growing evidence that aging involves, in addition, progressive changes in free radical-mediated regulatory processes that result in altered gene expression.
Abstract: At high concentrations, free radicals and radical-derived, nonradical reactive species are hazardous for living organisms and damage all major cellular constituents. At moderate concentrations, how...

9,131 citations

Journal ArticleDOI
05 Feb 2010-Cell
TL;DR: Methods to monitor autophagy and to modulate autophagic activity are discussed, with a primary focus on mammalian macroautophagy.

3,998 citations

Journal ArticleDOI
Lorenzo Galluzzi1, Lorenzo Galluzzi2, Ilio Vitale3, Stuart A. Aaronson4  +183 moreInstitutions (111)
TL;DR: The Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives.
Abstract: Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.

3,301 citations

Journal ArticleDOI
TL;DR: A major unifying thread of the review is a consideration of how the changes occurring during and after ischemia conspire to produce damaging levels of free radicals and peroxynitrite to activate calpain and other Ca(2+)-driven processes that are damaging, and to initiate the apoptotic process.
Abstract: This review is directed at understanding how neuronal death occurs in two distinct insults, global ischemia and focal ischemia. These are the two principal rodent models for human disease. Cell dea...

2,960 citations