scispace - formally typeset
Search or ask a question
Author

Eros Pedroni

Bio: Eros Pedroni is an academic researcher from Paul Scherrer Institute. The author has contributed to research in topics: Proton therapy & Dosimetry. The author has an hindex of 38, co-authored 69 publications receiving 6611 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A method is described to determine improved CT calibrations for biological tissue (a stoichiometric calibration) based on measurements using tissue equivalent materials that is more precise than the tissue substitute calibration.
Abstract: Computer tomographic (CT) scans are used to correct for tissue inhomogeneities in radiotherapy treatment planning. In order to guarantee a precise treatment, it is important to obtain the relationship between CT Hounsfield units and electron densities (or proton stopping powers for proton radiotherapy), which is the basic input for radiotherapy planning systems which consider tissue heterogeneities. A method is described to determine improved CT calibrations for biological tissue (a stoichiometric calibration) based on measurements using tissue equivalent materials. The precision of this stoichiometric calibration and the more usual tissue substitute calibration is determined by a comparison of calculated proton radiographic images based on these calibrations and measured radiographs of a biological sample. It has been found that the stoichiometric calibration is more precise than the tissue substitute calibration.

929 citations

Journal ArticleDOI
TL;DR: The new proton therapy facility is being assembled at the Paul Scherrer Institute (PSI) and the status of the facility and first experimental results are introduced for later reference.
Abstract: The new proton therapy facility is being assembled at the Paul Scherrer Institute (PSI). The beam delivered by the PSI sector cyclotron can be split and brought into a new hall where it is degraded from 590 MeV down to an energy in the range of 85-270 MeV. A new beam line following the degrader is used to clean the low-energetic beam in phase space and momentum band. The analyzed beam is then injected into a compact isocentric gantry, where it is applied to the patient using a new dynamic treatment modality, the so-called spot-scanning technique. This technique will permit full three-dimensional conformation of the dose to the target volume to be realized in a routine way without the need for individualized patient hardware like collimators and compensators. By combining the scanning of the focused pencil beam within the beam optics of the gantry and by mounting the patient table eccentrically on the gantry, the diameter of the rotating structure has been reduced to only 4 m. In the article the degrees of freedom available on the gantry to apply the beam to the patient (with two rotations for head treatments) are also discussed. The devices for the positioning of the patient on the gantry (x rays and proton radiography) and outside the treatment room (the patient transporter system and the modified mechanics of the computer tomograph unit) are briefly presented. The status of the facility and first experimental results are introduced for later reference.

651 citations

Journal ArticleDOI
TL;DR: It was found that the agreement between measurement and calibration curve is better than 1% if beam hardening effects in the acquisition of the CT images can be neglected and an estimation for the overall range precision of proton beams is given.
Abstract: The precision in proton radiotherapy treatment planning depends on the accuracy of the information used to calculate the stopping power properties of the tissues in the patient's body. This information is obtained from computed tomography (CT) images using a calibration curve to convert CT Hounsfield units into relative proton stopping power values. The validity of a stoichiometric method to create the calibration curve has been verified by measuring pairs of Hounsfield units and stopping power values for animal tissue samples. It was found that the agreement between measurement and calibration curve is better than 1% if beam hardening effects in the acquisition of the CT images can be neglected. The influence of beam hardening effects on the quantitative reading of the CT measurements is discussed and an estimation for the overall range precision of proton beams is given. It is expected that the range of protons in the human body can be controlled to better than +/-1.1% of the water equivalent range in soft tissue and +/-1.8% in bone, which translates into a range precision of about 1-3 mm in typical treatment situations.

377 citations

Journal ArticleDOI
TL;DR: The pencil beam dose model used for treatment planning at the PSI proton gantry, the only system presently applying proton therapy with a beam scanning technique, is presented, including the nuclear beam halo, which can predict quite precisely the dose directly from treatment planning without renormalization measurements.
Abstract: In this paper we present the pencil beam dose model used for treatment planning at the PSI proton gantry, the only system presently applying proton therapy with a beam scanning technique. The scope of the paper is to give a general overview on the various components of the dose model, on the related measurements and on the practical parametrization of the results. The physical model estimates from first physical principles absolute dose normalized to the number of incident protons. The proton beam flux is measured in practice by plane-parallel ionization chambers (ICs) normalized to protons via Faraday-cup measurements. It is therefore possible to predict and deliver absolute dose directly from this model without other means. The dose predicted in this way agrees very well with the results obtained with ICs calibrated in a cobalt beam. Emphasis is given in this paper to the characterization of nuclear interaction effects, which play a significant role in the model and are the major source of uncertainty in the direct estimation of the absolute dose. Nuclear interactions attenuate the primary proton flux, they modify the shape of the depth-dose curve and produce a faint beam halo of secondary dose around the primary proton pencil beam in water. A very simple beam halo model has been developed and used at PSI to eliminate the systematic dependences of the dose observed as a function of the size of the target volume. We show typical results for the relative (using a CCD system) and absolute (using calibrated ICs) dosimetry, routinely applied for the verification of patient plans. With the dose model including the nuclear beam halo we can predict quite precisely the dose directly from treatment planning without renormalization measurements, independently of the dose, shape and size of the dose fields. This applies also to the complex non-homogeneous dose distributions required for the delivery of range-intensity-modulated proton therapy, a novel therapy technique developed at PSI.

322 citations

Journal ArticleDOI
TL;DR: Field specific dosimetry shows that these treatments can be delivered accurately and precisely to within +/-1 mm (1 SD) orthogonal to the field direction and to within 1.5 mm in range, indicating the flexibility of the spot scanning system for treating lesions of all types and sizes.
Abstract: Since the end of 1996, we have treated more than 160 patients at PSI using spot-scanned protons. The range of indications treated has been quite wide and includes, in the head region, base-of-skull sarcomas, low-grade gliomas, meningiomas, and para-nasal sinus tumors. In addition, we have treated bone sarcomas in the neck and trunk--mainly in the sacral area--as well as prostate cases and some soft tissue sarcomas. PTV volumes for our treated cases are in the range 20-4500 ml, indicating the flexibility of the spot scanning system for treating lesions of all types and sizes. The number of fields per applied plan ranges from between 1 and 4, with a mean of just under 3 beams per plan, and the number of fluence modulated Bragg peaks delivered per field has ranged from 200 to 45 000. With the current delivery rate of roughly 3000 Bragg peaks per minute, this translates into delivery times per field of between a few seconds to 20-25 min. Bragg peak weight analysis of these spots has shown that over all fields, only about 10% of delivered spots have a weight of more than 10% of the maximum in any given field, indicating that there is some scope for optimizing the number of spots delivered per field. Field specific dosimetry shows that these treatments can be delivered accurately and precisely to within +/-1 mm (1 SD) orthogonal to the field direction and to within 1.5 mm in range. With our current delivery system the mean widths of delivered pencil beams at the Bragg peak is about 8 mm (sigma) for all energies, indicating that this is an area where some improvements can be made. In addition, an analysis of the spot weights and energies of individual Bragg peaks shows a relatively broad spread of low and high weighted Bragg peaks over all energy steps, indicating that there is at best only a limited relationship between pencil beam weighting and depth of penetration. This latter observation may have some consequences when considering strategies for fast re-scanning on second generation scanning gantries.

286 citations


Cited by
More filters
01 Jan 2014
TL;DR: Lymphedema is a common complication after treatment for breast cancer and factors associated with increased risk of lymphedEMA include extent of axillary surgery, axillary radiation, infection, and patient obesity.

1,988 citations

01 Jan 2001
TL;DR: This poster presents a probabilistic procedure for estimating the intensity values of radiolysis-like particles in the presence of X-ray diffraction waves.
Abstract: Pedro Andreo, Dosimetry and Medical Radiation Physics Section, IAEA David T Burns, Bureau International des Poids et Measures (BIPM) Klaus Hohlfeld, Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany M Saiful Huq, Thomas Jefferson University, Philadelphia, USA Tatsuaki Kanai, National Institute of Radiological Sciences (NIRS), Chiba, Japan Fedele Laitano, Ente per le Nuove Tecnologie L’Energia e L’Ambiente (ENEA), Rome, Italy Vere Smyth, National Radiation Laboratory (NRL), Christchurch, New Zealand Stefaan Vynckier, Catholic University of Louvain (UCL), Brussels, Belgium

1,699 citations

Journal ArticleDOI
TL;DR: Intensity-modulated radiation therapy (IMRT) allows dose to be concentrated in the tumor volume while sparing normal tissues, however, the downside to IMRT is the potential to increase the number of radiation-induced second cancers, so that doubling it may not be acceptable in older patients and in children.
Abstract: Intensity-modulated radiation therapy (IMRT) allows dose to be concentrated in the tumor volume while sparing normal tissues. However, the downside to IMRT is the potential to increase the number of radiation-induced second cancers. The reasons for this potential are more monitor units and, therefore, a larger total-body dose because of leakage radiation and, because IMRT involves more fields, a bigger volume of normal tissue is exposed to lower radiation doses. Intensity-modulated radiation therapy may double the incidence of solid cancers in long-term survivors. This outcome may be acceptable in older patients if balanced by an improvement in local tumor control and reduced acute toxicity. On the other hand, the incidence of second cancers is much higher in children, so that doubling it may not be acceptable. IMRT represents a special case for children for three reasons. First, children are more sensitive to radiation-induced cancer than are adults. Second, radiation scattered from the treatment volume is more important in the small body of the child. Third, the question of genetic susceptibility arises because many childhood cancers involve a germline mutation. The levels of leakage radiation in current Linacs are not inevitable. Leakage can be reduced but at substantial cost. An alternative strategy is to replace X-rays with protons. However, this change is only an advantage if the proton machine employs a pencil scanning beam. Many proton facilities use passive modulation to produce a field of sufficient size, but the use of a scattering foil produces neutrons, which results in an effective dose to the patient higher than that characteristic of IMRT. The benefit of protons is only achieved if a scanning beam is used in which the doses are 10 times lower than with IMRT.

1,040 citations

Journal ArticleDOI
TL;DR: A significant impact of Monte Carlo dose calculation can be expected in complex geometries where local range uncertainties due to multiple Coulomb scattering will reduce the accuracy of analytical algorithms and in these cases Monte Carlo techniques might reduce the range uncertainty by several mm.
Abstract: The main advantages of proton therapy are the reduced total energy deposited in the patient as compared to photon techniques and the finite range of the proton beam. The latter adds an additional degree of freedom to treatment planning. The range in tissue is associated with considerable uncertainties caused by imaging, patient setup, beam delivery and dose calculation. Reducing the uncertainties would allow a reduction of the treatment volume and thus allow a better utilization of the advantages of protons. This paper summarizes the role of Monte Carlo simulations when aiming at a reduction of range uncertainties in proton therapy. Differences in dose calculation when comparing Monte Carlo with analytical algorithms are analyzed as well as range uncertainties due to material constants and CT conversion. Range uncertainties due to biological effects and the role of Monte Carlo for in vivo range verification are discussed. Furthermore, the current range uncertainty recipes used at several proton therapy facilities are revisited. We conclude that a significant impact of Monte Carlo dose calculation can be expected in complex geometries where local range uncertainties due to multiple Coulomb scattering will reduce the accuracy of analytical algorithms. In these cases Monte Carlo techniques might reduce the range uncertainty by several mm.

1,027 citations

Journal ArticleDOI
TL;DR: A method is described to determine improved CT calibrations for biological tissue (a stoichiometric calibration) based on measurements using tissue equivalent materials that is more precise than the tissue substitute calibration.
Abstract: Computer tomographic (CT) scans are used to correct for tissue inhomogeneities in radiotherapy treatment planning. In order to guarantee a precise treatment, it is important to obtain the relationship between CT Hounsfield units and electron densities (or proton stopping powers for proton radiotherapy), which is the basic input for radiotherapy planning systems which consider tissue heterogeneities. A method is described to determine improved CT calibrations for biological tissue (a stoichiometric calibration) based on measurements using tissue equivalent materials. The precision of this stoichiometric calibration and the more usual tissue substitute calibration is determined by a comparison of calculated proton radiographic images based on these calibrations and measured radiographs of a biological sample. It has been found that the stoichiometric calibration is more precise than the tissue substitute calibration.

929 citations