scispace - formally typeset
Search or ask a question
Author

Ersan Üstündag

Bio: Ersan Üstündag is an academic researcher from Iowa State University. The author has contributed to research in topics: Residual stress & Amorphous metal. The author has an hindex of 22, co-authored 69 publications receiving 1754 citations. Previous affiliations of Ersan Üstündag include California Institute of Technology & Los Alamos National Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: This work uses a combined theoretical and experimental approach to establish a relation between crystallographic symmetry and the ability of a ferroelectric polycrystalline ceramic to switch, and shows that equiaxed polycrystal of materials that are either tetragonal or rhombohedral cannot switch; yet polycrystals of materials where these two symmetries co-exist can in fact switch.
Abstract: Ferroelectric ceramics are widely used as sensors and actuators for their electro-mechanical properties, and in electronic applications for their dielectric properties. Domain switching – the phenomenon wherein the ferroelectric material changes from one spontaneously polarized state to another under electrical or mechanical loads – is an important attribute of these materials. However, this is a complex collective process in commercially used polycrystalline ceramics that are agglomerations of a very large number of variously oriented grains. As the domains in one grain attempt to switch, they are constrained by the differently oriented neighbouring grains. Here we use a combined theoretical and experimental approach to establish a relation between crystallographic symmetry and the ability of a ferroelectric polycrystalline ceramic to switch. In particular, we show that equiaxed polycrystals of materials that are either tetragonal or rhombohedral cannot switch; yet polycrystals of materials where these two symmetries co-exist can in fact switch.

352 citations

Journal ArticleDOI
TL;DR: A new spectrometer called SMARTS (Spectrometer for Materials Research at Temperature and Stress) has been commissioned at the Los Alamos neutron science center and entered the user program in August of 2002 as mentioned in this paper.
Abstract: A new spectrometer called SMARTS (Spectrometer for Materials Research at Temperature and Stress) has been commissioned at the Los Alamos neutron science center and entered the user program in August of 2002. Its design maximizes capability and throughput for measurements of (a) residual macrostrain in engineering components and (b) in situ loading. This paper describes some aspects of the instrument.

226 citations

Journal ArticleDOI
TL;DR: A new facility for microdiffraction strain measurements and microfluorescence mapping has been built at the advanced light source of the Lawrence Berkeley National Laboratory and allows a variety of experiments, which have in common the need of spatial resolution.
Abstract: A new facility for microdiffraction strain measurements and microfluorescence mapping has been built on beamline 12.3.2 at the advanced light source of the Lawrence Berkeley National Laboratory. This beamline benefits from the hard x-radiation generated by a 6 T superconducting bending magnet (superbend). This provides a hard x-ray spectrum from 5 to 22 keV and a flux within a 1 microm spot of approximately 5x10(9) photons/s (0.1% bandwidth at 8 keV). The radiation is relayed from the superbend source to a focus in the experimental hutch by a toroidal mirror. The focus spot is tailored by two pairs of adjustable slits, which serve as secondary source point. Inside the lead hutch, a pair of Kirkpatrick-Baez (KB) mirrors placed in a vacuum tank refocuses the secondary slit source onto the sample position. A new KB-bending mechanism with active temperature stabilization allows for more reproducible and stable mirror bending and thus mirror focusing. Focus spots around 1 microm are routinely achieved and allow a variety of experiments, which have in common the need of spatial resolution. The effective spatial resolution (approximately 0.2 microm) is limited by a convolution of beam size, scan-stage resolution, and stage stability. A four-bounce monochromator consisting of two channel-cut Si(111) crystals placed between the secondary source and KB-mirrors allows for easy changes between white-beam and monochromatic experiments while maintaining a fixed beam position. High resolution stage scans are performed while recording a fluorescence emission signal or an x-ray diffraction signal coming from either a monochromatic or a white focused beam. The former allows for elemental mapping, whereas the latter is used to produce two-dimensional maps of crystal-phases, -orientation, -texture, and -strain/stress. Typically achieved strain resolution is in the order of 5x10(-5) strain units. Accurate sample positioning in the x-ray focus spot is achieved with a commercial laser-triangulation unit. A Si-drift detector serves as a high-energy-resolution (approximately 150 eV full width at half maximum) fluorescence detector. Fluorescence scans can be collected in continuous scan mode with up to 300 pixels/s scan speed. A charge coupled device area detector is utilized as diffraction detector. Diffraction can be performed in reflecting or transmitting geometry. Diffraction data are processed using XMAS, an in-house written software package for Laue and monochromatic microdiffraction analysis.

172 citations

Journal ArticleDOI
TL;DR: Residual strain maps in a region surrounding an isolated, approximately 40 μm wide, 90° domain were obtained with 3 μm resolution, revealing significant residual strains, critical for accurate micromechanical modelling of domain behaviour in ferroelectrics.
Abstract: Ferroelectric materials, such as BaTiO_3, have piezoelectric properties that make them attractive for microelectronic and sensing applications. It is well known that the application of mechanical stress or electric field can alter the domain structure in ferroelectrics. Indeed, the constitutive behaviour of a ferroelectric is largely governed by the formation, movement and interaction of its domains. Therefore, it is crucial that the micromechanics of domains and their effect on internal stresses in ferroelectrics be understood. Here we show that the emerging technique of scanning X-ray microdiffraction can be used to measure directly, for the first time, the local triaxial strain fields around 90° domains in single-crystal BaTiO_3. Specifically, residual strain maps in a region surrounding an isolated, approximately 40 µm wide, 90° domain were obtained with 3 µm resolution, revealing significant residual strains. This information is critical for accurate micromechanical modelling of domain behaviour in ferroelectrics.

75 citations

Journal ArticleDOI
TL;DR: In situ uniaxial compression experiments on Pb(Zr,Ti)O3 or PZT-based polycrystalline electroceramics were conducted using time-of-flight neutron diffraction.
Abstract: In situ uniaxial compression experiments on Pb(Zr,Ti)O3 or PZT-based polycrystalline electroceramics were conducted using time-of-flight neutron diffraction. Elastic lattice strain and texture evolution were observed in PZT’s near the edge of the morphotropic phase boundary (with tetragonal and rhombohedral phases present). Multiphase Rietveld analysis yielded anisotropic lattice strain evolution curves in directions parallel and perpendicular to the loading axis for both phases. A quantitative analysis of the domain switching under applied stress was possible through application of a March–Dollase model for texture.

73 citations


Cited by
More filters
Journal ArticleDOI
10 Mar 1970

8,159 citations

Journal ArticleDOI
TL;DR: In this paper, a review of recent advances in understanding the mechanical behavior of metallic glasses, with particular emphasis on the deformation and fracture mechanisms, is presented, where the role of glass structure on mechanical properties, and conversely, the effect of deformation upon glass structure, are also described.

2,858 citations

Journal ArticleDOI
28 Feb 2008-Nature
TL;DR: T titanium–zirconium-based BMG composites with room-temperature tensile ductility exceeding 10 per cent, yield strengths of 1.2–1.5 GPa, K1C up to ∼170 MPa m1/2, and fracture energies for crack propagation as high as G1C ≈ 340 kJ’m-2.2 were reported.
Abstract: Metallic glasses have been the subject of intense scientific study since the 1960s, owing to their unique properties such as high strength, large elastic limit, high hardness, and amorphous microstructure. However, bulk metallic glasses have not been used in the high strength structural applications for which they have so much potential, owing to a highly localized failure mechanism that results in catastrophic failure during unconfined loading. In this thesis, bulk metallic glass matrix composites are designed with the combined benefits of high yield strengths and tensile ductility. This milestone is achieved by first investigating the length scale of the highly localized deformation, known as shear bands, that governs fracture in all metallic glasses. Under unconfined loading, a shear band grows to a certain length that is dependent on the fracture toughness of the glass before a crack nucleates and fracture occurs. Increasing the fracture toughness and ductility involves adding microstructural stabilization techniques that prevent shear bands from lengthening and promotes formation of multiple shear bands. To accomplish this, we develop in-situ formed bulk metallic glass matrix-composites with soft crystalline dendrites whose size and distribution are controlled through a novel semi-solid processing technique. The new alloys have a dramatically increased room-temperature ductility and a fracture toughness that appears to be similar to the toughest steels. Owing to their low modulus, the composites are therefore among the toughest known materials, a claim that has recently been confirmed independently by a fracture mechanics group. We extend our toughening strategy to a titanium-vanadium-based glass-dendrite composite system with density as low as 4.97 g/cm3. The new low-density composites rival the mechanical properties of the best structural crystalline Ti alloys. We demonstrate new processing techniques available in the highly toughened composites: room temperature cold rolling, work hardening, and thermoplastic forming. This thesis is a proven road map for developing metallic glass composites into real structural engineering materials.

1,324 citations

Journal ArticleDOI
TL;DR: In this paper, a review of magnetoelectric domain walls is presented, focusing on magneto-electrics and multiferroics but making comparisons where possible with magnetic domains and domain walls.
Abstract: Domains in ferroelectrics were considered to be well understood by the middle of the last century: They were generally rectilinear, and their walls were Ising-like. Their simplicity stood in stark contrast to the more complex Bloch walls or N\'eel walls in magnets. Only within the past decade and with the introduction of atomic-resolution studies via transmission electron microscopy, electron holography, and atomic force microscopy with polarization sensitivity has their real complexity been revealed. Additional phenomena appear in recent studies, especially of magnetoelectric materials, where functional properties inside domain walls are being directly measured. In this paper these studies are reviewed, focusing attention on ferroelectrics and multiferroics but making comparisons where possible with magnetic domains and domain walls. An important part of this review will concern device applications, with the spotlight on a new paradigm of ferroic devices where the domain walls, rather than the domains, are the active element. Here magnetic wall microelectronics is already in full swing, owing largely to the work of Cowburn and of Parkin and their colleagues. These devices exploit the high domain wall mobilities in magnets and their resulting high velocities, which can be supersonic, as shown by Kreines' and co-workers 30 years ago. By comparison, nanoelectronic devices employing ferroelectric domain walls often have slower domain wall speeds, but may exploit their smaller size as well as their different functional properties. These include domain wall conductivity (metallic or even superconducting in bulk insulating or semiconducting oxides) and the fact that domain walls can be ferromagnetic while the surrounding domains are not.

1,022 citations

Journal ArticleDOI
Jan Schroers1
TL;DR: Unique among metal processing methods, TPF utilizes the dramatic softening exhibited by a BMG as it approaches its glass-transition temperature and decouples the rapid cooling required to form a glass from the forming step.
Abstract: Bulk metallic glass (BMG) formers are multicomponent alloys that vitrify with remarkable ease during solidification. Technological interest in these materials has been generated by their unique properties, which often surpass those of conventional structural materials. The metastable nature of BMGs, however, has imposed a barrier to broad commercial adoption, particularly where the processing requirements of these alloys conflict with conventional metal processing methods. Research on the crystallization of BMG formers has uncovered novel thermoplastic forming (TPF)-based processing opportunities. Unique among metal processing methods, TPF utilizes the dramatic softening exhibited by a BMG as it approaches its glass-transition temperature and decouples the rapid cooling required to form a glass from the forming step. This article reviews crystallization processes in BMG former and summarizes and compares TPF-based processing methods. Finally, an assessment of scientific and technological advancements required for broader commercial utilization of BMGs will be made.

837 citations