scispace - formally typeset
Search or ask a question
Author

Esen Tasgin

Other affiliations: Bayburt University
Bio: Esen Tasgin is an academic researcher from Atatürk University. The author has contributed to research in topics: Adsorption & Pectin lyase. The author has an hindex of 7, co-authored 18 publications receiving 385 citations. Previous affiliations of Esen Tasgin include Bayburt University.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effects of salicylic acid (SA) and cold on freezing tolerance (freezing injury and ice nucleation activity) were investigated in winter wheat (Triticum aestivum cv. Dogu-88) grown under control (20/18 °C for 15, 30 and 45-day) and in cold (15/10 °C and 5/3 °C) conditions.
Abstract: The effects of salicylic acid (SA) (0.01, 0.1 and 1 mM) and cold on freezing tolerance (freezing injury and ice nucleation activity) were investigated in winter wheat (Triticum aestivum cv. Dogu-88) grown under control (20/18 °C for 15, 30 and 45-day) and cold (15/10 °C for 15-day, 10/5 °C for 30-day and 5/3 °C for 45-day) conditions. Cold acclimatisation caused a decrease of injury to leaf segments removed from the plants and subjected to freezing conditions. Exogenous SA also decreased freezing injury in the leaves grown under cold (15/10 °C) and control (15 and 30-day) conditions. Cold conditions (10/5 and 5/3 °C) caused an increase in ice nucleation activity by apoplastic proteins, which were isolated from the leaves. For the first time, it was shown that exogenous SA caused an increase in ice nucleation activity under cold (15/10 and 10/5 °C) and control conditions. These results show that salicylic acid can increase freezing tolerance in winter wheat leaves by affecting apoplastic proteins.

182 citations

Journal ArticleDOI
TL;DR: It is concluded that exogenous SA can be involved in cold tolerance by regulating apoplastic proteins and antioxidant enzyme activities.

124 citations

Journal Article
TL;DR: In this paper, the removal of cadmium from aqueous solutions using bacteria-modified red mud waste material was described by applying pseudo-first-order and pseudo-second-order rate equations.
Abstract: Cadmium is a toxic metal widely used in industry and it enters the environment from electroplating, smelting, alloy manufacturing, pigments, plastics, cadmium-nickel batteries, fertilizers, pesticides, mining, pigments and dyes, textile operations, and refining industries. Considering the harmful effects of cadmium, it is necessary to remove cadmium from liquid wastes at least to the limit accepted by regulations. The present study describes removal of cadmium from aqueous solutions using bacteria-modified red mud waste material. Batch adsorption experiments have been performed as a function of pH, contact time, temperature, and adsorbent dosage. The optimum results were obtained at pH 4.0, contact time of 60 min, temperature of 30oC, and an adsorbent dose of 1 mg/mL. The adsorption data was correlated with Langmuir and Freundlich adsorption models. The maximum adsorption capacity obtained from Langmuir adsorption model was 83.034 mg/g. The kinetic processes of cadmium adsorption on bacteria-modified red mud were described by applying pseudo-first-order and pseudo-second-order rate equations. The kinetic data for the adsorption process obeyed pseudo-second-order rate equations. Various thermodynamic parameters, such as ΔG°, ΔH°, and ΔS° were calculated and the negative value of ΔG° obtained indicate that the process was spontaneous, and the positive value of ΔH° confirms the reaction to be endothermic, and the positive value of ΔS° shows that the decrease in the degree of freedom of the adsorbed species. The bacteria-modified red mud investigated in this study exhibited a high potential for the removal of cadmium from aqueous solutions.

22 citations

Journal ArticleDOI
TL;DR: The purified PL enzyme was used in the production of fruit juices; yields of fruits juice improved significantly compared with controls and the pH and temperature of the enzyme were determined as pH 6.0 and 60°C, respectively.
Abstract: Extracellular pectin lyase (PL) (EC 4.2.2.10) was produced by Geobacillus stearothermophilus Ah22 in solid state fermentation. The PL enzyme was purified 40.8-fold by DEAE-cellulose anion exchange column chromatography and characterized. The molecular weight of the enzyme was determined as 36 kDa by Sephadex G-100 gel filtration chromatography. Purification of the enzyme was verified by SDS-PAGE. The optimum pH and temperature of the enzyme were determined as pH 6.0 and 60°C, respectively. The PL was mostly stable at 40°C. Its activity deceased by 50% after 2 h at 60°C and by 60% after 6 h at 50°C. The V max and K m were calculated as 0.47 mg/mL and 355.3 μmol/L·min, respectively. The presence of 10 mM Ca2+, Cu2+, Mn2+, Mg2+, Zn2+, Hg2+, Fe2+ and EDTA, l-cysteine and ascorbic acid significantly enhanced enzyme activity. The purified PL enzyme was used in the production of fruit juices; yields of fruits juice improved significantly compared with controls.

19 citations

Journal ArticleDOI
TL;DR: In this paper, the removal of acid fuchsin dye from aqueous solutions using zeolite natural material after its modification with laccase from Russulaceae (Lactarius volemus).
Abstract: This paper studies, the removal of acid fuchsin dye from aqueous solutions using zeolite natural material after its modification with laccase from Russulaceae (Lactarius volemus). Batch adsorption experiments were performed as a function of pH, contact time, temperature, and adsorbent dosage. The optimum results were obtained at pH 5, contact time of 60 min, temperature of 60oC, and an adsorbent dosage of 1.5 mg/mL. The isotherm studies show that the adsorption experimental data are fitted well by Langmuir isotherm model. The adsorption capacity found is 31 mg/g. The kinetics of AFD adsorption on LMZ is best described with the pseudo-first-order kinetics model. Thermodynamic parameters including Gibbs free energy, enthalpy, and entropy changes indicate that the adsorption of Acid Fuchsin dye onto laccase-modified zeolite is feasible, spontaneous, and exothermic. The results show that laccase-modified zeolite can be used as an alternative lowcost adsorbent for dye removal from aqueous solutions.

18 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Various intrinsic biosynthetic pathways, interplay of SA and MeSA, its long distance transport and signaling, and the effect of exogenous application of SA on bio-productivity, growth, photosynthesis, plant water relations, various enzyme activities and its effect on the plants exposed to various biotic and abiotic stresses are discussed.

998 citations

Journal ArticleDOI
TL;DR: In this paper, a review focuses on recent literature reporting on the main types of abiotic and biotic stresses that alter the biosynthesis of lignin in plants and how a stressor modulates expression of the genes related with ligninsynthesis.
Abstract: Lignin is a polymer of phenylpropanoid compounds formed through a complex biosynthesis route, represented by a metabolic grid for which most of the genes involved have been sequenced in several plants, mainly in the model-plants Arabidopsis thaliana and Populus. Plants are exposed to different stresses, which may change lignin content and composition. In many cases, particularly for plant-microbe interactions, this has been suggested as defence responses of plants to the stress. Thus, understanding how a stressor modulates expression of the genes related with lignin biosynthesis may allow us to develop study-models to increase our knowledge on the metabolic control of lignin deposition in the cell wall. This review focuses on recent literature reporting on the main types of abiotic and biotic stresses that alter the biosynthesis of lignin in plants.

761 citations

Journal ArticleDOI
TL;DR: This review compares the roles of SA during different abiotic stresses, showing that not only does exogenous SA application moderate stress effects, but abiotic stress factors may also alter the endogenous SA levels in the plant cells.
Abstract: The role of salicylic acid (SA) as a key molecule in the signal transduction pathway of biotic stress responses has already been well described. Recent studies indicate that it also participates in the signaling of abiotic stresses. The application of exogenous SA could provide protection against several types of stresses such as high or low temperature, heavy metals, and so on. Although SA may also cause oxidative stress to plants, partially through the accumulation of hydrogen peroxide, the results published so far show that the preliminary treatment of plants with low concentrations of SA might have an acclimation-like effect, causing enhanced tolerance toward most kinds of abiotic stresses due primarily to enhanced antioxidative capacity. The effect of exogenous SA depends on numerous factors such as the species and developmental stage of the plant, the mode of application, and the concentration of SA and its endogenous level in the given plant. Recent results show that not only does exogenous SA application moderate stress effects, but abiotic stress factors may also alter the endogenous SA levels in the plant cells. This review compares the roles of SA during different abiotic stresses.

700 citations

Journal ArticleDOI
TL;DR: In this article, the effect of grain soaking presowing in 1 mM salicylic acid (SA) and NaCl (0, 50, 100, 150 and 200 mM) on barley (Hordeum vulgare cv Gerbel) was studied.
Abstract: Effect of grain soaking presowing in 1 mM salicylic acid (SA) and NaCl (0, 50, 100, 150 and 200 mM) on barley (Hordeum vulgare cv Gerbel) was studied. Increasing of NaCl level reduced the germination percentage, the growth parameters (fresh and dry weight), potassium, calcium, phosphorus and insoluble sugars content in both shoots and roots of 15-day old seedlings. Leaf relative water content (RWC) and the photosynthetic pigments (Chl a, b and carotenoids) contents also decreased with increasing NaCl concentration. On the other hand, Na, soluble sugars, soluble proteins, free amino acids including proline content and lipid peroxidation level and peroxidase activity were increased in the two plant organs with increasing of NaCl level. Electrolyte leakage from plant leaves was found to increase with salinity level. SA-pretreatment increased the RWC, fresh and dry weights, water, photosynthetic pigments, insolube saccharides, phosphorus content and peroxidase activity in the stressed seedlings. On the contrary, Na+, soluble proteins content, lipid peroxidation level, electrolyte leakage were markedly reduced under salt stress with SA than without. Under stress conditions, SA-pretreated plants exhibited less Ca2+ and more accumulation of K+, and soluble sugars in roots at the expense of these contents in the plant shoots. Exogenous application (Grain soaking presowing) of SA appeared to induce preadaptive response to salt stress leading to promoting protective reactions to the photosynthetic pigments and maintain the membranes integrity in barley plants, which reflected in improving the plant growth.

651 citations

Journal ArticleDOI
TL;DR: The effects of SA on the water stress responses and regulation of stomatal closure are reviewed.
Abstract: Salicylic acid (SA) is a naturally occurring phenolic compound. SA plays an important role in the regulation of plant growth, development, ripening, and defense responses. The role of SA in the plant-pathogen relationship has been extensively investigated. In addition to defense responses, SA plays an important role in the response to abiotic stresses, including drought, low temperature, and salinity stresses. It has been suggested that SA has great agronomic potential to improve the stress tolerance of agriculturally important crops. However, the utility of SA is dependent on the concentration of the applied SA, the mode of application, and the state of the plants (e.g., developmental stage and acclimation). Generally, low concentrations of applied SA alleviate the sensitivity to abiotic stresses, and high concentrations of applied induce high levels of oxidative stress, leading to a decreased tolerance to abiotic stresses. In this chapter, the effects of SA on the water stress responses and regulation of stomatal closure are reviewed.

611 citations