scispace - formally typeset
Search or ask a question
Author

Esmaeil Mortaz

Other affiliations: Shahid Beheshti University, Utrecht University, Urmia University  ...read more
Bio: Esmaeil Mortaz is an academic researcher from Shahid Beheshti University of Medical Sciences and Health Services. The author has contributed to research in topics: Immune system & Innate immune system. The author has an hindex of 34, co-authored 181 publications receiving 3335 citations. Previous affiliations of Esmaeil Mortaz include Shahid Beheshti University & Utrecht University.


Papers
More filters
Journal ArticleDOI
TL;DR: An overview of the current understanding of neutrophil subpopulations and their function during and post-infection is provided and the possible mechanisms of immune modulation by neutrophils in severe inflammation are discussed.
Abstract: Neutrophils are main players in the effector phase of the host defense against micro-organisms and have a major role in the innate immune response. Neutrophils show phenotypic heterogeneity and functional flexibility, which highlight their importance in regulation of immune function. However, neutrophils can play a dual role and besides their antimicrobial function, deregulation of neutrophils and their hyperactivity can lead to tissue damage in severe inflammation or trauma. Neutrophils also have an important role in the modulation of the immune system in response to severe injury and trauma. In this review we will provide an overview of the current understanding of neutrophil subpopulations and their function during and post-infection and discuss the possible mechanisms of immune modulation by neutrophils in severe inflammation.

217 citations

Journal ArticleDOI
TL;DR: It is demonstrated that especially human monocytes are sensitive to produce IL-8 upon cigarette smoke stimulation compared to lymphocytes or neutrophils, and monocyte-derived macrophages produce high amounts of the cytokine.
Abstract: The major risk factor for the development of COPD is cigarette smoking. Smoking causes activation of resident cells and the recruitment of inflammatory cells into the lungs, which leads to release of pro-inflammatory cytokines, chemotactic factors, oxygen radicals and proteases. In the present study evidence is found for a new cellular mechanism that refers to a link between smoking and inflammation in lungs. Employing human monocyte-derived macrophages, different techniques including FACS analysis, Cytometric Bead Array Assay and ELISA were achieved to evaluate the effects of CS on pro-inflammatory cytokine secretion including IL-8. Then, Toll-like receptor neutralization was performed to study the involvement of Toll-like receptor-4 in IL-8 production. Finally, signaling pathways in macrophages after exposure to CS medium were investigated performing ELISA and Western analysis. We demonstrate that especially human monocytes are sensitive to produce IL-8 upon cigarette smoke stimulation compared to lymphocytes or neutrophils. Moreover, monocyte-derived macrophages produce high amounts of the cytokine. The IL-8 production is dependent on Toll-like receptor 4 stimulation and LPS is not involved. Further research resolved the cellular mechanism by which cigarette smoke induces cytokine production in monocyte-derived macrophages. Cigarette smoke causes subsequently a concentration-dependent phosphorylation of IRAK and degradation of TRAF6. Moreover, IκBα was phosphorylated which suggests involvement of NF-κB. In addition, NFκB -inhibitor blocked cigarette smoke-induced IL-8 production. These findings link cigarette smoke to inflammation and lead to new insights/therapeutic strategies in the pathogenesis of lung emphysema.

145 citations

Journal ArticleDOI
TL;DR: An update on PRR signaling during M. tuberculosis infection is provided and how greater knowledge of these pathways may lead to new therapeutic opportunities is indicated.
Abstract: Tuberculosis (TB) is considered a major worldwide health problem with 10 million new cases diagnosed each year. Our understanding of TB immunology has become greater and more refined since the identification of Mycobacterium tuberculosis (MTB) as an etiologic agent and the recognition of new signaling pathways modulating infection. Understanding the mechanisms through which the cells of the immune system recognize MTB can be an important step in designing novel therapeutic approaches, as well as improving the limited success of current vaccination strategies. A great challenge in chronic disease is to understand the complexities, mechanisms, and consequences of host interactions with pathogens. Innate immune responses along with the involvement of distinct inflammatory mediators and cells play an important role in the host defense against the MTB. Several classes of pattern recognition receptors (PRRs) are involved in the recognition of MTB including Toll-Like Receptors (TLRs), C-type lectin receptors (CLRs) and Nod-like receptors (NLRs) linked to inflammasome activation. Among the TLR family, TLR1, TLR2, TLR4, and TLR9 and their down-stream signaling proteins play critical roles in the initiation of the immune response in the pathogenesis of TB. The inflammasome pathway is associated with the coordinated release of cytokines such as IL-1β and IL-18 which also play a role in the pathogenesis of TB. Understanding the cross-talk between these signaling pathways will impact on the design of novel therapeutic strategies and in the development of vaccines and immunotherapy regimes. Abnormalities in PRR signaling pathways regulated by TB will affect disease pathogenesis and need to be elucidated. In this review we provide an update on PRR signaling during M. tuberculosis infection and indicate how greater knowledge of these pathways may lead to new therapeutic opportunities.

140 citations

Journal ArticleDOI
TL;DR: The current review summarizes the understanding of how immune dysregulation and altered cytokine networks contribute to the pathophysiology of COVID-19 patients and suggests the existence of immunological dysregulation as an accompanying event during severe illness caused by this virus.
Abstract: Coronaviruses were first discovered in the 1960s and are named due to their crown-like shape. Sometimes, but not often, a coronavirus can infect both animals and humans. An acute respiratory disease, caused by a novel coronavirus (severe acute respiratory syndrome coronavirus-2 or SARS-CoV-2 previously known as 2019-nCoV) was identified as the cause of coronavirus disease 2019 (COVID-19) as it spread throughout China and subsequently across the globe. As of 14th July 2020, a total of 13.1 million confirmed cases globally and 572,426 deaths had been reported by the World Health Organization (WHO). SARS-CoV-2 belongs to the β-coronavirus family and shares extensive genomic identity with bat coronavirus suggesting that bats are the natural host. SARS-CoV-2 uses the same receptor, angiotensin-converting enzyme 2 (ACE2), as that for SARS-CoV, the coronavirus associated with the SARS outbreak in 2003. It mainly spreads through the respiratory tract with lymphopenia and cytokine storms occuring in the blood of subjects with severe disease. This suggests the existence of immunological dysregulation as an accompanying event during severe illness caused by this virus. The early recognition of this immunological phenotype could assist prompt recognition of patients who will progress to severe disease. Here we review the data of the immune response during COVID-19 infection. The current review summarizes our understanding of how immune dysregulation and altered cytokine networks contribute to the pathophysiology of COVID-19 patients.

129 citations

Journal ArticleDOI
TL;DR: The importance of PID defects in the development of malignancies and the current limitations associated with molecular pathogenesis of these diseases are discussed and the need for further knowledge of how specific mutations can modulate the immune system to alter immunosurveillance is emphasized.
Abstract: The life span of patients with primary and secondary immunodeficiency is increasing due to recent improvements in therapeutic strategies. While the incidence of primary immunodeficiencies (PIDs) is 1:10,000 births, that of secondary immunodeficiencies are more common and are associated with posttransplantation immune dysfunction, with immunosuppressive medication for human immunodeficiency virus or with human T-cell lymphotropic virus infection. After infection, malignancy is the most prevalent cause of death in both children and adults with (PIDs). PIDs more often associated with cancer include common variable immunodeficiency (CVID), Wiskott-Aldrich syndrome, ataxia-telangiectasia, and severe combined immunodeficiency. This suggests that a protective immune response against both infectious non-self-(pathogens) and malignant self-challenges (cancer) exists. The increased incidence of cancer has been attributed to defective elimination of altered or "transformed" cells and/or defective immunity towards cancer cells. The concept of aberrant immune surveillance occurring in PIDs is supported by evidence in mice and from patients undergoing immunosuppression after transplantation. Here, we discuss the importance of PID defects in the development of malignancies and the current limitations associated with molecular pathogenesis of these diseases and emphasize the need for further knowledge of how specific mutations can modulate the immune system to alter immunosurveillance and thereby play a key role in the etiology of malignancies in PID patients.

127 citations


Cited by
More filters
Journal ArticleDOI
07 Feb 2020-Science
TL;DR: The intrinsic properties of exosomes in regulating complex intracellular pathways has advanced their potential utility in the therapeutic control of many diseases, including neurodegenerative conditions and cancer.
Abstract: The study of extracellular vesicles (EVs) has the potential to identify unknown cellular and molecular mechanisms in intercellular communication and in organ homeostasis and disease. Exosomes, with an average diameter of ~100 nanometers, are a subset of EVs. The biogenesis of exosomes involves their origin in endosomes, and subsequent interactions with other intracellular vesicles and organelles generate the final content of the exosomes. Their diverse constituents include nucleic acids, proteins, lipids, amino acids, and metabolites, which can reflect their cell of origin. In various diseases, exosomes offer a window into altered cellular or tissue states, and their detection in biological fluids potentially offers a multicomponent diagnostic readout. The efficient exchange of cellular components through exosomes can inform their applied use in designing exosome-based therapeutics.

3,715 citations

DOI
05 Nov 2009
TL;DR: 结节病易误诊,据王洪武等~([1])收集国内18篇关于此第一印象中拟诊 结核5例,为此应引起临床对本 病诊
Abstract: 结节病易误诊,据王洪武等~([1])收集国内18篇关于此病误诊的文献,误诊率高达63.2%,当然有误诊就会有误治,如孙永昌等~([2])报道26例结节病在影像学检查诊断的第一印象中拟诊结核5例,其中就有2例完成规范的抗结核治疗,为此应引起临床对本病诊治的重视。

1,821 citations

Journal ArticleDOI
Jonas Schulte-Schrepping1, Nico Reusch1, Daniela Paclik2, Kevin Baßler1, Stephan Schlickeiser2, Bowen Zhang3, Benjamin Krämer4, Tobias Krammer, Sophia Brumhard2, Lorenzo Bonaguro1, Elena De Domenico5, Daniel Wendisch2, Martin Grasshoff3, Theodore S. Kapellos1, Michael Beckstette3, Tal Pecht1, Adem Saglam5, Oliver Dietrich, Henrik E. Mei6, Axel Schulz6, Claudia Conrad2, Désirée Kunkel2, Ehsan Vafadarnejad, Cheng-Jian Xu7, Cheng-Jian Xu3, Arik Horne1, Miriam Herbert1, Anna Drews5, Charlotte Thibeault2, Moritz Pfeiffer2, Stefan Hippenstiel2, Andreas C. Hocke2, Holger Müller-Redetzky2, Katrin-Moira Heim2, Felix Machleidt2, Alexander Uhrig2, Laure Bosquillon de Jarcy2, Linda Jürgens2, Miriam Stegemann2, Christoph R. Glösenkamp2, Hans-Dieter Volk2, Christine Goffinet2, Markus Landthaler8, Emanuel Wyler8, Philipp Georg2, Maria Schneider2, Chantip Dang-Heine2, Nick Neuwinger2, Kai Kappert2, Rudolf Tauber2, Victor M. Corman2, Jan Raabe4, Kim Melanie Kaiser4, Michael To Vinh4, Gereon Rieke4, Christian Meisel2, Thomas Ulas5, Matthias Becker5, Robert Geffers, Martin Witzenrath2, Christian Drosten2, Norbert Suttorp2, Christof von Kalle2, Florian Kurth9, Florian Kurth2, Florian Kurth10, Kristian Händler5, Joachim L. Schultze1, Joachim L. Schultze5, Anna C. Aschenbrenner7, Anna C. Aschenbrenner1, Yang Li3, Yang Li7, Jacob Nattermann4, Birgit Sawitzki2, Antoine-Emmanuel Saliba, Leif E. Sander2, Angel Angelov, Robert Bals, Alexander Bartholomäus, Anke Becker, Daniela Bezdan, Ezio Bonifacio, Peer Bork, Thomas Clavel, Maria Colomé-Tatché, Andreas Diefenbach, Alexander T. Dilthey, Nicole Fischer, Konrad U. Förstner, Julia-Stefanie Frick, Julien Gagneur, Alexander Goesmann, Torsten Hain, Michael Hummel, Stefan Janssen, Jörn Kalinowski, René Kallies, Birte Kehr, Andreas Keller, Sarah Kim-Hellmuth, Christoph Klein, Oliver Kohlbacher, Jan O. Korbel, Ingo Kurth, Kerstin U. Ludwig, Oliwia Makarewicz, Manja Marz, Alice C. McHardy, Christian Mertes, Markus M. Nöthen, Peter Nürnberg, Uwe Ohler, Stephan Ossowski, Jörg Overmann, Silke Peter, Klaus Pfeffer, Anna R. Poetsch, Alfred Pühler, Nikolaus Rajewsky, Markus Ralser, Olaf Rieß, Stephan Ripke, Ulisses Nunes da Rocha, Philip Rosenstiel, Philipp H. Schiffer, Eva-Christina Schulte, Alexander Sczyrba, Oliver Stegle, Jens Stoye, Fabian J. Theis, Janne Vehreschild, Jörg Vogel, Max von Kleist, Andreas Walker, Jörn Walter, Dagmar Wieczorek, John Ziebuhr 
17 Sep 2020-Cell
TL;DR: This study provides detailed insights into the systemic immune response to SARS-CoV-2 infection and it reveals profound alterations in the myeloid cell compartment associated with severe COVID-19.

1,042 citations

01 Oct 2004
TL;DR: The nature and function of the immune response to fungi is an exciting challenge that might set the stage for new approaches to the treatment of fungal diseases, from immunotherapy to vaccines.
Abstract: Fungal diseases represent an important paradigm in immunology, as they can result from either a lack of recognition by the immune system or overactivation of the inflammatory response. Research in this field is entering an exciting period of transition from studying the molecular and cellular bases of fungal virulence to determining the cellular and molecular mechanisms that maintain immune homeostasis with fungi. The fine line between these two research areas is central to our understanding of tissue homeostasis and its possible breakdown in fungal infections and diseases. Recent insights into immune responses to fungi suggest that functionally distinct mechanisms have evolved to achieve optimal host-fungus interactions in mammals.

992 citations