scispace - formally typeset
Search or ask a question
Author

Essaid Ait Barka

Other affiliations: Laval University
Bio: Essaid Ait Barka is an academic researcher from University of Reims Champagne-Ardenne. The author has contributed to research in topics: Medicine & Biology. The author has an hindex of 25, co-authored 67 publications receiving 6772 citations. Previous affiliations of Essaid Ait Barka include Laval University.


Papers
More filters
Journal ArticleDOI
TL;DR: As agricultural production intensified over the past few decades, producers became more and more dependent on agrochemicals as a relatively reliable method of crop production.
Abstract: Pathogenic microorganisms affecting plant health are a major and chronic threat to food production and ecosystem stability worldwide As agricultural production intensified over the past few decades, producers became more and more dependent on agrochemicals as a relatively reliable method of crop

2,246 citations

Journal ArticleDOI
TL;DR: Actinobacteria are Gram-positive bacteria with high G+C DNA content that constitute one of the largest bacterial phyla, and they are ubiquitously distributed in both aquatic and terrestrial ecosystems.
Abstract: Actinobacteria are Gram-positive bacteria with high G+C DNA content that constitute one of the largest bacterial phyla, and they are ubiquitously distributed in both aquatic and terrestrial ecosystems. Many Actinobacteria have a mycelial lifestyle and undergo complex morphological differentiation. They also have an extensive secondary metabolism and produce about two-thirds of all naturally derived antibiotics in current clinical use, as well as many anticancer, anthelmintic, and antifungal compounds. Consequently, these bacteria are of major importance for biotechnology, medicine, and agriculture. Actinobacteria play diverse roles in their associations with various higher organisms, since their members have adopted different lifestyles, and the phylum includes pathogens (notably, species of Corynebacterium, Mycobacterium, Nocardia, Propionibacterium, and Tropheryma), soil inhabitants (e.g., Micromonospora and Streptomyces species), plant commensals (e.g., Frankia spp.), and gastrointestinal commensals (Bifidobacterium spp.). Actinobacteria also play an important role as symbionts and as pathogens in plant-associated microbial communities. This review presents an update on the biology of this important bacterial phylum.

1,199 citations

Journal ArticleDOI
TL;DR: Analysis of the PsJN colonization patterns showed that this strain colonizes grapevine root surfaces, as well as cell walls and the whole surface of some rhizodermal cells, and cell wall-degrading endoglucanase and endopolygalacturonase secreted by PsN explained how the bacterium gains entry into root internal tissues.
Abstract: Patterns of colonization of Vitis vinifera L. cv. Chardonnay plantlets by a plant growth-promoting bacterium, Burkholderia sp. strain PsJN, were studied under gnotobiotic conditions. Wild-type strain PsJN and genetically engineered derivatives of this strain tagged with gfp (PsJN::gfp2x) or gusA (PsJN::gusA11) genes were used to enumerate and visualize tissue colonization. The rhizospheres of 4- to 5-week-old plantlets with five developed leaves were inoculated with bacterial suspensions. Epiphytic and endophytic colonization patterns were then monitored by dilution plating assays and microscopic observation of organ sections. Bacteria were chronologically detected first on root surfaces, then in root internal tissues, and finally in the fifth internode and the tissues of the fifth leaf. Analysis of the PsJN colonization patterns showed that this strain colonizes grapevine root surfaces, as well as cell walls and the whole surface of some rhizodermal cells. Cells were also abundant at lateral root emergence sites and root tips. Furthermore, cell wall-degrading endoglucanase and endopolygalacturonase secreted by PsJN explained how the bacterium gains entry into root internal tissues. Host defense reactions were observed in the exodermis and in several cortical cell layers. Bacteria were not observed on stem and leaf surfaces but were found in xylem vessels of the fifth internode and the fifth leaf of plantlets. Moreover, bacteria were more abundant in the fifth leaf than in the fifth internode and were found in substomatal chambers. Thus, it seems that Burkholderia sp. strain PsJN induces a local host defense reaction and systemically spreads to aerial parts through the transpiration stream.

745 citations

Journal ArticleDOI
20 Apr 2012-Planta
TL;DR: This review summarizes recent progress in research and hypotheses on how sensitive plants perceive cold and explores how this perception is translated into changes within plants following exposure to low temperatures, leading to cold acclimation.
Abstract: Apart from water availability, low temperature is the most important environmental factor limiting the productivity and geographical distribution of plants across the world. To cope with cold stress, plant species have evolved several physiological and molecular adaptations to maximize cold tolerance by adjusting their metabolism. The regulation of some gene products represents an additional mechanism of cold tolerance. A consequence of these mechanisms is that plants are able to survive exposure to low temperature via a process known as cold acclimation. In this review, we briefly summarize recent progress in research and hypotheses on how sensitive plants perceive cold. We also explore how this perception is translated into changes within plants following exposure to low temperatures. Particular emphasis is placed on physiological parameters as well as transcriptional, post-transcriptional and post-translational regulation of cold-induced gene products that occur after exposure to low temperatures, leading to cold acclimation.

517 citations

Journal ArticleDOI
TL;DR: In vitro inoculation of Vitis vinifera L. cv.
Abstract: In vitro inoculation of Vitis vinifera L. cv. Chardonnay explants with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN, increased grapevine growth and physiological activity at a low temperature. There was a relationship between endophytic bacterial colonization of the grapevine plantlets and their growth at both ambient (26°C) and low (4°C) temperatures and their sensitivities to chilling. The major benefits of bacterization were observed on root growth (11.8- and 10.7-fold increases at 26°C and 4°C, respectively) and plantlet biomass (6- and 2.2-fold increases at 26°C and 4°C, respectively). The inoculation with PsJN also significantly improved plantlet cold tolerance compared to that of the nonbacterized control. In nonchilled plantlets, bacterization enhanced CO2 fixation and O2 evolution 1.3 and 2.2 times, respectively. The nonbacterized controls were more sensitive to exposure to low temperatures than were the bacterized plantlets, as indicated by several measured parameters. Moreover, relative to the noninoculated controls, bacterized plantlets had significantly increased levels of starch, proline, and phenolics. These increases correlated with the enhancement of cold tolerance of the grapevine plantlets. In summary, B. phytofirmans strain PsJN inoculation stimulates grapevine growth and improves its ability to withstand cold stress.

476 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review restricts itself to bacteria that are derived from and exert this effect on the root and generally designated as PGPR (plant-growth-promoting rhizobacteria), which can be direct or indirect in their effects on plant growth.
Abstract: Several microbes promote plant growth, and many microbial products that stimulate plant growth have been marketed. In this review we restrict ourselves to bacteria that are derived from and exert this effect on the root. Such bacteria are generally designated as PGPR (plant-growth-promoting rhizobacteria). The beneficial effects of these rhizobacteria on plant growth can be direct or indirect. This review begins with describing the conditions under which bacteria live in the rhizosphere. To exert their beneficial effects, bacteria usually must colonize the root surface efficiently. Therefore, bacterial traits required for root colonization are subsequently described. Finally, several mechanisms by which microbes can act beneficially on plant growth are described. Examples of direct plant growth promotion that are discussed include (a) biofertilization, (b) stimulation of root growth, (c) rhizoremediation, and (d) plant stress control. Mechanisms of biological control by which rhizobacteria can promote plant growth indirectly, i.e., by reducing the level of disease, include antibiosis, induction of systemic resistance, and competition for nutrients and niches.

3,761 citations

Journal ArticleDOI
TL;DR: As agricultural production intensified over the past few decades, producers became more and more dependent on agrochemicals as a relatively reliable method of crop production.
Abstract: Pathogenic microorganisms affecting plant health are a major and chronic threat to food production and ecosystem stability worldwide As agricultural production intensified over the past few decades, producers became more and more dependent on agrochemicals as a relatively reliable method of crop

2,246 citations

Journal ArticleDOI
11 Oct 2012
TL;DR: It is envisioned that in the not too distant future, plant growth-promoting bacteria (PGPB) will begin to replace the use of chemicals in agriculture, horticulture, silviculture, and environmental cleanup strategies.
Abstract: The worldwide increases in both environmental damage and human population pressure have the unfortunate consequence that global food production may soon become insufficient to feed all of the world's people. It is therefore essential that agricultural productivity be significantly increased within the next few decades. To this end, agricultural practice is moving toward a more sustainable and environmentally friendly approach. This includes both the increasing use of transgenic plants and plant growth-promoting bacteria as a part of mainstream agricultural practice. Here, a number of the mechanisms utilized by plant growth-promoting bacteria are discussed and considered. It is envisioned that in the not too distant future, plant growth-promoting bacteria (PGPB) will begin to replace the use of chemicals in agriculture, horticulture, silviculture, and environmental cleanup strategies. While there may not be one simple strategy that can effectively promote the growth of all plants under all conditions, some of the strategies that are discussed already show great promise.

2,094 citations

Journal ArticleDOI
TL;DR: The progress to date in using the rhizosphere bacteria in a variety of applications related to agricultural improvement along with their mechanism of action with special reference to plant growth-promoting traits are summarized and discussed in this review.
Abstract: Plant growth-promoting rhizobacteria (PGPR) are the rhizosphere bacteria that can enhance plant growth by a wide variety of mechanisms like phosphate solubilization, siderophore production, biological nitrogen fixation, rhizosphere engineering, production of 1-Aminocyclopropane-1-carboxylate deaminase (ACC), quorum sensing (QS) signal interference and inhibition of biofilm formation, phytohormone production, exhibiting antifungal activity, production of volatile organic compounds (VOCs), induction of systemic resistance, promoting beneficial plant-microbe symbioses, interference with pathogen toxin production etc. The potentiality of PGPR in agriculture is steadily increased as it offers an attractive way to replace the use of chemical fertilizers, pesticides and other supplements. Growth promoting substances are likely to be produced in large quantities by these rhizosphere microorganisms that influence indirectly on the overall morphology of the plants. Recent progress in our understanding on the diversity of PGPR in the rhizosphere along with their colonization ability and mechanism of action should facilitate their application as a reliable component in the management of sustainable agricultural system. The progress to date in using the rhizosphere bacteria in a variety of applications related to agricultural improvement along with their mechanism of action with special reference to plant growth-promoting traits are summarized and discussed in this review.

1,941 citations

Journal ArticleDOI
TL;DR: Physiological and molecular data on the factors that drive selection processes in the rhizosphere are presented and implications for agriculture, nature conservation and biotechnology will also be discussed.

1,831 citations