scispace - formally typeset
Search or ask a question
Author

Estrid Jakobsen

Bio: Estrid Jakobsen is an academic researcher from Max Planck Society. The author has contributed to research in topics: Broca's region & Motor cortex. The author has an hindex of 4, co-authored 5 publications receiving 92 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The data extend the Brodmann model in human sensorimotor cortex and suggest that body parts are an important organizing principle, similar to the distinction between sensory and motor processing.
Abstract: The cytoarchitectonic map as proposed by Brodmann currently dominates models of human sensorimotor cortical structure, function, and plasticity. According to this model, primary motor cortex, area 4, and primary somatosensory cortex, area 3b, are homogenous areas, with the major division lying between the two. Accumulating empirical and theoretical evidence, however, has begun to question the validity of the Brodmann map for various cortical areas. Here, we combined in vivo cortical myelin mapping with functional connectivity analyses and topographic mapping techniques to reassess the validity of the Brodmann map in human primary sensorimotor cortex. We provide empirical evidence that area 4 and area 3b are not homogenous, but are subdivided into distinct cortical fields, each representing a major body part (the hand and the face). Myelin reductions at the hand-face borders are cortical layer-specific, and coincide with intrinsic functional connectivity borders as defined using large-scale resting state analyses. Our data extend the Brodmann model in human sensorimotor cortex and suggest that body parts are an important organizing principle, similar to the distinction between sensory and motor processing.

63 citations

Journal ArticleDOI
TL;DR: The current study provides a reliable method for individual‐level cortical parcellation that could be applied to regions distinguishable by even the most subtle differences in patterns of functional connectivity, and produces clusters with varying degrees of spatial overlap with the manual labels.
Abstract: Broca's region is composed of two adjacent cytoarchitectonic areas, 44 and 45, which have distinct connectivity to superior temporal and inferior parietal regions in both macaque monkeys and humans. The current study aimed to make use of prior knowledge of sulcal anatomy and resting-state functional connectivity, together with a novel visualization technique, to manually parcellate areas 44 and 45 in individual brains in vivo. One hundred and one resting-state functional magnetic resonance imaging datasets from the Human Connectome Project were used. Left-hemisphere surface-based correlation matrices were computed and visualized in brainGL. By observation of differences in the connectivity patterns of neighbouring nodes, areas 44 and 45 were manually parcellated in individual brains, and then compared at the group-level. Additionally, the manual labelling approach was compared with parcellation results based on several data-driven clustering techniques. Areas 44 and 45 could be clearly distinguished from each other in all individuals, and the manual segmentation method showed high test-retest reliability. Group-level probability maps of areas 44 and 45 showed spatial consistency across individuals, and corresponded well to cytoarchitectonic probability maps. Group-level connectivity maps were consistent with previous studies showing distinct connectivity patterns of areas 44 and 45. Data-driven parcellation techniques produced clusters with varying degrees of spatial overlap with the manual labels, indicating the need for further investigation and validation of machine learning cortical segmentation approaches. The current study provides a reliable method for individual-level cortical parcellation that could be applied to regions distinguishable by even the most subtle differences in patterns of functional connectivity.

17 citations

Journal ArticleDOI
TL;DR: While the current study focuses on Broca's region, the method is adaptable to parcellate other cortical regions with distinct connectivity profiles, and can be applied to resting‐state fMRI datasets with varying acquisition and preprocessing parameters.

17 citations

Journal ArticleDOI
TL;DR: Two approaches for presenting connexels are described, edge-bundling, which clarifies structure by grouping geometrically similar connections; and, connectivity glyphs, which depict a condensed connectivity map at each point on the cortical surface, which can be applied in the native brain space.
Abstract: The visualization of brain connectivity becomes progressively more challenging as analytic and computational advances begin to facilitate connexel-wise analyses, which include all connections between pairs of voxels. Drawing full connectivity graphs can result in depictions that, rather than illustrating connectivity patterns in more detail, obfuscate patterns owing to the data density. In an effort to expand the possibilities for visualization, we describe two approaches for presenting connexels: edge-bundling, which clarifies structure by grouping geometrically similar connections; and, connectivity glyphs, which depict a condensed connectivity map at each point on the cortical surface. These approaches can be applied in the native brain space, facilitating interpretation of the relation of connexels to brain anatomy. The tools have been implemented as part of brainGL, an extensive open-source software for the interactive exploration of structural and functional brain data.

17 citations

17 Jun 2015
TL;DR: Spatial overlap of the results from the automated classification and manual labeling procedures for the testing datasets, presented on the individual inflated cortical surfaces was calculated using the Dice coefficient (DC).
Abstract: aalf: anterior ascending ramus of the lateral fissure cs: central sulcus half: horizontal ascending ramus of the lateral fissure iprs: inferior precentral sulcus Op: pars opercularis Tr: pars triangularis http://code.google.com/p/braingl Data were provided by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University Spatial overlap of the results from the automated classification (red and green) and manual labeling (black outline) procedures for the testing datasets, presented on the individual inflated cortical surfaces. Spatial overlap of the two procedures was calculated using the Dice coefficient (DC).

1 citations


Cited by
More filters
Journal ArticleDOI
19 Jul 2017-Neuron
TL;DR: Investigation of the detailed network organization of four individuals each scanned 24 times using MRI discovered that the distributed network known as the default network is comprised of two separate networks possessing adjacent regions in eight or more cortical zones.

448 citations

Journal ArticleDOI
TL;DR: This work uses resting-state functional MRI data and connectivity clustering to identify multi-network hubs and shows that while hubs can belong to multiple networks their degree of integration into these different networks varies dynamically over time.
Abstract: Network studies of large-scale brain connectivity have demonstrated that highly connected areas, or "hubs," are a key feature of human functional and structural brain organization. We use resting-state functional MRI data and connectivity clustering to identify multi-network hubs and show that while hubs can belong to multiple networks their degree of integration into these different networks varies dynamically over time. The extent of the network variation was related to the connectedness of the hub. In addition, we found that these network dynamics were inversely related to positive self-generated thoughts reported by individuals and were further decreased with older age. Moreover, the left caudate varied its degree of participation between a default mode subnetwork and a limbic network. This variation was predictive of individual differences in the reports of past-related thoughts. These results support an association between ongoing thought processes and network dynamics and offer a new approach to investigate the brain dynamics underlying mental experience.

251 citations

Journal ArticleDOI
TL;DR: An approach to unfold the human hippocampus and examine spatial variations of intrinsic functional connectivity in a large cohort of healthy adults is developed and two main axes of subregional connectivity transitions are identified: one that respects its long axis and a second that follows patterns of hippocampal infolding and significantly correlates with an intracortical microstructure.
Abstract: The hippocampus plays key roles in cognition and affect and serves as a model system for structure/function studies in animals. So far, its complex anatomy has challenged investigations targeting its substructural organization in humans. State-of-the-art MRI offers the resolution and versatility to identify hippocampal subfields, assess its microstructure, and study topographical principles of its connectivity in vivo. We developed an approach to unfold the human hippocampus and examine spatial variations of intrinsic functional connectivity in a large cohort of healthy adults. In addition to mapping common and unique connections across subfields, we identified two main axes of subregional connectivity transitions. An anterior/posterior gradient followed long-axis landmarks and metaanalytical findings from task-based functional MRI, while a medial/lateral gradient followed hippocampal infolding and correlated with proxies of cortical myelin. Findings were consistent in an independent sample and highly stable across resting-state scans. Our results provide robust evidence for long-axis specialization in the resting human hippocampus and suggest an intriguing interplay between connectivity and microstructure.

182 citations

01 Jan 2009
TL;DR: Together, these results implicate the extracellular generation of protons, rather than intracellular acidification, as the primary signal that mediates the taste of CO2, and demonstrate that sour cells not only provide the membrane anchor for Car4 but also serve as the cellular sensors for carbonation.
Abstract: TRCs, with taste at the periphery proposed to be encoded via labeled lines [i.e., a sweet line, a sour line, a bitter line, etc. (21)]. Given that Car4 is specifically tethered to the surface of sour-sensing cells, and thus ideally poised to provide a highly localized acid signal to the sour TRCs, we reasoned that carbonation might be sensed through activation of the sour-labeled line. A prediction of this postulate is that prevention of sour cell activation should eliminate CO2 detection, even in the presence of wild-type Car4 function. To test this hypothesis, we engineered animals in which the activation of nerve fibers innervating sour-sensing cells was blocked by preventing neurotransmitter release from the PKD2L1-expressing TRCs. In essence, we transgenically targeted expression of tetanus toxin light chain [TeNT, an endopeptidase that removes an essential component of the synaptic machinery (34–36)] to sour-sensing TRCs, and then monitored the physiological responses of these mice to sweet, sour, bitter, salty, umami and CO2 stimulation. As predicted, taste responses to sour stimuli were selectively and completely abolished, whereas responses to sweet, bitter, salty and umami tastants remained unaltered (Fig. 4 and fig. S5). However, these animals also displayed a complete loss of taste responses to CO2 even though they still expressed Car4 on the surface of PKD2L1 cells. Together, these results implicate the extracellular generation of protons, rather than intracellular acidification (15), as the primary signal that mediates the taste of CO2, and demonstrate that sour cells not only provide the membrane anchor for Car4 but also serve as the cellular sensors for carbonation. Why do animals need CO2 sensing? CO2 detection could have evolved as a mechanism to recognize CO2-producing sources (18, 37)—for instance, to avoid fermenting foods. This view would be consistent with the recent discovery of a specialized CO2 taste detection in insects where it mediates robust innate taste behaviors (38). Alternatively, Car4 may be important to maintain the pH balance within taste buds, and might gratuitously function as a detector for carbonation only as an accidental consequence. Although CO2 activates the sour-sensing cells, it does not simply taste sour to humans. CO2 (like acid) acts not only on the taste system but also in other orosensory pathways, including robust stimulation of the somatosensory system (17, 22); thus, the final percept of carbonation is likely to be a combination of multiple sensory inputs. Nonetheless, the “fizz” and “tingle” of heavily carbonated water is often likened to mild acid stimulation of the tongue, and in some cultures seltzer is even named for its salient sour taste (e.g., saurer Sprudel or Sauerwasser).

167 citations