scispace - formally typeset
Search or ask a question
Author

Etienne Combrisson

Bio: Etienne Combrisson is an academic researcher from Aix-Marseille University. The author has contributed to research in topics: Python (programming language) & Computer science. The author has an hindex of 11, co-authored 21 publications receiving 656 citations. Previous affiliations of Etienne Combrisson include University of Lyon & Claude Bernard University Lyon 1.

Papers
More filters
Journal ArticleDOI
TL;DR: This study demonstrates how applying signal classification to Gaussian random signals can yield decoding accuracies of up to 70% or higher in two-class decoding with small sample sets, taking sample size into account.

452 citations

Journal ArticleDOI
TL;DR: These findings provide the first direct electrophysiological evidence indicating that the anterior insula rapidly detects and conveys error signals to dmPFC, while the latter might use this input to adapt behavior following inappropriate actions.
Abstract: The ability to monitor our own errors is mediated by a network that includes dorsomedial prefrontal cortex (dmPFC) and anterior insula (AI). However, the dynamics of the underlying neurophysiological processes remain unclear. In particular, whether AI is on the receiving or driving end of the error-monitoring network is unresolved. Here, we recorded intracerebral electroencephalography signals simultaneously from AI and dmPFC in epileptic patients while they performed a stop-signal task. We found that errors selectively modulated broadband neural activity in human AI. Granger causality estimates revealed that errors were immediately followed by a feedforward influence from AI onto anterior cingulate cortex and, subsequently, onto presupplementary motor area. The reverse pattern of information flow was observed on correct responses. Our findings provide the first direct electrophysiological evidence indicating that the anterior insula rapidly detects and conveys error signals to dmPFC, while the latter might use this input to adapt behavior following inappropriate actions.

86 citations

Journal ArticleDOI
TL;DR: A machine‐learning framework was used to identify the key contributions of various neuronal responses and found a high degree of overlap between brain network patterns observed during planning and those present during execution, which advances understanding of the distinct and partly overlapping involvement of phase, amplitude and the coupling between them, in the neuronal mechanisms underlying motor intentions and executions.

63 citations

Journal ArticleDOI
TL;DR: Visbrain is a Python open-source package that offers a comprehensive visualization suite for neuroimaging and electrophysiological brain data and is developed on top of VisPy, a Python package providing high-performance 2D and 3D visualization by leveraging the computational power of the graphics card.
Abstract: We present Visbrain, a Python open-source package that offers a comprehensive visualization suite for neuroimaging and electrophysiological brain data. Visbrain consists of two levels of abstraction: 1) objects which represent highly configurable neuro-oriented visual primitives (3D brain, sources connectivity, etc.) and 2) graphical user interfaces for higher level interactions. The object level offers flexible and modular tools to produce and automate the production of figures using an approach similar to that of Matplotlib with subplots.. The second level visually connects these objects by controlling properties and interactions through graphical interfaces. The current release of Visbrain (version 0.4.2) contains 14 different objects and three responsive graphical user interfaces, built with PyQt: Signal, for the inspection of time-series and spectral properties, Brain for any type of visualization involving a 3D brain and Sleep for polysomnographic data visualization and sleep analysis. Each module has been developed in tight collaboration with end-users, i.e. primarily neuroscientists and domain experts, who bring their experience to make Visbrain as transparent as possible to the recording modalities (e.g. intracranial EEG, scalp-EEG, MEG, anatomical and functional MRI). Visbrain is developed on top of VisPy, a Python package providing high-performance 2D and 3D visualization by leveraging the computational power of the graphics card. Visbrain is available on Github and comes with a documentation, examples, and datasets (http://visbrain.org).

44 citations

Journal ArticleDOI
TL;DR: MEG appears to be a promising but still critically underexploited technique to unravel the neurophysiological mechanisms that mediate abnormal (both hyper- and hypo-) connectivity patterns involved in major depressive disorder (MDD) and bipolar disorder (BD).
Abstract: Despite being the object of a thriving field of clinical research, the investigation of intrinsic brain network alterations in psychiatric illnesses is still in its early days. Because the pathological alterations are predominantly probed using functional magnetic resonance imaging (fMRI), many questions about the electrophysiological bases of resting-state alterations in psychiatric disorders, particularly among mood disorder patients, remain unanswered. Alongside important research using electroencephalography (EEG), the specific recent contributions and future promise of magnetoencephalography (MEG) in this field are not fully recognized and valued. Here, we provide a critical review of recent findings from MEG resting-state connectivity within major depressive disorder (MDD) and bipolar disorder (BD). The clinical MEG resting-state results are compared to those previously reported with fMRI and EEG. Taken together, MEG appears to be a promising but still critically under-exploited technique to unravel the neurophysiological mechanisms that mediate abnormal (both hyper- and hypo-) connectivity patterns involved in MDD and BD. In particular, a major strength of MEG is its ability to provide source-space estimations of neuromagnetic long-range rhythmic synchronization at various frequencies (i.e. oscillatory coupling). The reviewed literature highlights the relevance of probing local and inter-regional rhythmic synchronization in order to explore the pathophysiological underpinnings of each disorder. However, before we can fully take advantage of MEG connectivity analyses in psychiatry, several limitations inherent to MEG connectivity analyses need to be understood and taken into account. Thus, we also discuss current methodological challenges and outline paths for future research. MEG resting-state studies provide an important window onto perturbed spontaneous oscillatory brain networks and hence supply an important complement to fMRI-based resting-state measurements in psychiatric populations.

32 citations


Cited by
More filters
Journal Article
TL;DR: It is hypothesized that beta oscillations and/or coupling in the beta-band are expressed more strongly if the maintenance of the status quo is intended or predicted, than if a change is expected.
Abstract: In this review, we consider the potential functional role of beta-band oscillations, which at present is not yet well understood. We discuss evidence from recent studies on top-down mechanisms involved in cognitive processing, on the motor system and on the pathophysiology of movement disorders that suggest a unifying hypothesis: beta-band activity seems related to the maintenance of the current sensorimotor or cognitive state. We hypothesize that beta oscillations and/or coupling in the beta-band are expressed more strongly if the maintenance of the status quo is intended or predicted, than if a change is expected. Moreover, we suggest that pathological enhancement of beta-band activity is likely to result in an abnormal persistence of the status quo and a deterioration of flexible behavioural and cognitive control.

1,837 citations

01 Jan 2016
TL;DR: As you may know, people have search numerous times for their chosen novels like this statistical parametric mapping the analysis of functional brain images, but end up in malicious downloads.
Abstract: Thank you very much for reading statistical parametric mapping the analysis of functional brain images. As you may know, people have search numerous times for their chosen novels like this statistical parametric mapping the analysis of functional brain images, but end up in malicious downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they cope with some infectious bugs inside their desktop computer.

1,719 citations

Journal ArticleDOI
18 Mar 2019-eLife
TL;DR: It is shown, for the first time in humans, that complementary sequence-specific motor representations evolve distinctively during critical phases of skill acquisition and consolidation.
Abstract: Functional magnetic resonance imaging (fMRI) studies investigating the acquisition of sequential motor skills in humans have revealed learning-related functional reorganizations of the cortico-striatal and cortico-cerebellar motor systems accompanied with an initial hippocampal contribution. Yet, the functional significance of these activity-level changes remains ambiguous as they convey the evolution of both sequence-specific knowledge and unspecific task ability. Moreover, these changes do not specifically assess the occurrence of learning-related plasticity. To address these issues, we investigated local circuits tuning to sequence-specific information using multivariate distances between patterns evoked by consolidated or newly acquired motor sequences production. The results reveal that representations in dorsolateral striatum, prefrontal and secondary motor cortices are greater when executing consolidated sequences than untrained ones. By contrast, sequence representations in the hippocampus and dorsomedial striatum becomes less engaged. Our findings show, for the first time in humans, that complementary sequence-specific motor representations evolve distinctively during critical phases of skill acquisition and consolidation.

718 citations

Journal ArticleDOI
07 Nov 2019-PLOS ONE
TL;DR: The authors' simulations show that K-fold Cross-Validation (CV) produces strongly biased performance estimates with small sample sizes, and the bias is still evident with sample size of 1000, while Nested CV and train/test split approaches produce robust and unbiased performance estimates regardless of sample size.
Abstract: Advances in neuroimaging, genomic, motion tracking, eye-tracking and many other technology-based data collection methods have led to a torrent of high dimensional datasets, which commonly have a small number of samples because of the intrinsic high cost of data collection involving human participants. High dimensional data with a small number of samples is of critical importance for identifying biomarkers and conducting feasibility and pilot work, however it can lead to biased machine learning (ML) performance estimates. Our review of studies which have applied ML to predict autistic from non-autistic individuals showed that small sample size is associated with higher reported classification accuracy. Thus, we have investigated whether this bias could be caused by the use of validation methods which do not sufficiently control overfitting. Our simulations show that K-fold Cross-Validation (CV) produces strongly biased performance estimates with small sample sizes, and the bias is still evident with sample size of 1000. Nested CV and train/test split approaches produce robust and unbiased performance estimates regardless of sample size. We also show that feature selection if performed on pooled training and testing data is contributing to bias considerably more than parameter tuning. In addition, the contribution to bias by data dimensionality, hyper-parameter space and number of CV folds was explored, and validation methods were compared with discriminable data. The results suggest how to design robust testing methodologies when working with small datasets and how to interpret the results of other studies based on what validation method was used.

622 citations

Journal ArticleDOI
TL;DR: Intentions from developing a set of recommendations on behalf of the Organization for Human Brain Mapping are described and barriers that impede these practices are identified, including how the discipline must change to fully exploit the potential of the world's neuroimaging data.
Abstract: Given concerns about the reproducibility of scientific findings, neuroimaging must define best practices for data analysis, results reporting, and algorithm and data sharing to promote transparency, reliability and collaboration. We describe insights from developing a set of recommendations on behalf of the Organization for Human Brain Mapping and identify barriers that impede these practices, including how the discipline must change to fully exploit the potential of the world's neuroimaging data.

544 citations