scispace - formally typeset
Search or ask a question
Author

Etienne Simon-Loriere

Bio: Etienne Simon-Loriere is an academic researcher from Pasteur Institute. The author has contributed to research in topics: Virology & Medicine. The author has an hindex of 33, co-authored 90 publications receiving 4015 citations. Previous affiliations of Etienne Simon-Loriere include Pennsylvania State University & University of Strasbourg.


Papers
More filters
Journal ArticleDOI
08 Jul 2021-Nature
TL;DR: In this paper, an infectious strain of the SARS-CoV-2 Delta variant was isolated from an individual with COVID-19 who had returned to France from India.
Abstract: The SARS-CoV-2 B.1.617 lineage was identified in October 2020 in India1–5. Since then, it has become dominant in some regions of India and in the UK, and has spread to many other countries6. The lineage includes three main subtypes (B1.617.1, B.1.617.2 and B.1.617.3), which contain diverse mutations in the N-terminal domain (NTD) and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein that may increase the immune evasion potential of these variants. B.1.617.2—also termed the Delta variant—is believed to spread faster than other variants. Here we isolated an infectious strain of the Delta variant from an individual with COVID-19 who had returned to France from India. We examined the sensitivity of this strain to monoclonal antibodies and to antibodies present in sera from individuals who had recovered from COVID-19 (hereafter referred to as convalescent individuals) or who had received a COVID-19 vaccine, and then compared this strain with other strains of SARS-CoV-2. The Delta variant was resistant to neutralization by some anti-NTD and anti-RBD monoclonal antibodies, including bamlanivimab, and these antibodies showed impaired binding to the spike protein. Sera collected from convalescent individuals up to 12 months after the onset of symptoms were fourfold less potent against the Delta variant relative to the Alpha variant (B.1.1.7). Sera from individuals who had received one dose of the Pfizer or the AstraZeneca vaccine had a barely discernible inhibitory effect on the Delta variant. Administration of two doses of the vaccine generated a neutralizing response in 95% of individuals, with titres three- to fivefold lower against the Delta variant than against the Alpha variant. Thus, the spread of the Delta variant is associated with an escape from antibodies that target non-RBD and RBD epitopes of the spike protein. The SARS-CoV-2 Delta variant partially evades neutralization by several monoclonal antibodies and by sera from individuals who have had COVID-19, but two doses of anti-COVID-19 vaccines still generate a strong neutralizing response.

1,462 citations

Journal ArticleDOI
TL;DR: In this paper, the sensitivity of the two variants to SARS-CoV-2 antibodies present in sera and nasal swabs from individuals infected with previously circulating strains or who were recently vaccinated, in comparison with a D614G reference virus was examined.
Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.7 and B.1.351 variants were first identified in the United Kingdom and South Africa, respectively, and have since spread to many countries. These variants harboring diverse mutations in the gene encoding the spike protein raise important concerns about their immune evasion potential. Here, we isolated infectious B.1.1.7 and B.1.351 strains from acutely infected individuals. We examined sensitivity of the two variants to SARS-CoV-2 antibodies present in sera and nasal swabs from individuals infected with previously circulating strains or who were recently vaccinated, in comparison with a D614G reference virus. We utilized a new rapid neutralization assay, based on reporter cells that become positive for GFP after overnight infection. Sera from 58 convalescent individuals collected up to 9 months after symptoms, similarly neutralized B.1.1.7 and D614G. In contrast, after 9 months, convalescent sera had a mean sixfold reduction in neutralizing titers, and 40% of the samples lacked any activity against B.1.351. Sera from 19 individuals vaccinated twice with Pfizer Cominarty, longitudinally tested up to 6 weeks after vaccination, were similarly potent against B.1.1.7 but less efficacious against B.1.351, when compared to D614G. Neutralizing titers increased after the second vaccine dose, but remained 14-fold lower against B.1.351. In contrast, sera from convalescent or vaccinated individuals similarly bound the three spike proteins in a flow cytometry-based serological assay. Neutralizing antibodies were rarely detected in nasal swabs from vaccinees. Thus, faster-spreading SARS-CoV-2 variants acquired a partial resistance to neutralizing antibodies generated by natural infection or vaccination, which was most frequently detected in individuals with low antibody levels. Our results indicate that B1.351, but not B.1.1.7, may increase the risk of infection in immunized individuals.

580 citations

Journal ArticleDOI
TL;DR: There is little evidence that recombination is favoured by natural selection to create advantageous genotypes or purge deleterious mutations, as predicted if recombination functions as a form of sexual reproduction, and recombination may be a mechanistic by-product of the evolutionary pressures acting on other aspects of virus biology.
Abstract: Recombination occurs in many RNA viruses and can be of major evolutionary significance However, rates of recombination vary dramatically among RNA viruses, which can range from clonal to highly recombinogenic Here, we review the factors that might explain this variation in recombination frequency and show that there is little evidence that recombination is favoured by natural selection to create advantageous genotypes or purge deleterious mutations, as predicted if recombination functions as a form of sexual reproduction Rather, recombination rates seemingly reflect larger-scale patterns of viral genome organization, such that recombination may be a mechanistic by-product of the evolutionary pressures acting on other aspects of virus biology

553 citations

Journal ArticleDOI
04 Aug 2016-Nature
TL;DR: It is reported that a subset of antibodies targeting a conformational epitope isolated from patients with dengue virus also potently neutralize Zika virus, providing a lead for rational, epitope-focused design of a universal vaccine capable of eliciting potent cross-neutralizing antibodies to protect simultaneously against both Zika and d Dengue virus infections.
Abstract: Zika virus is a member of the Flavivirus genus that had not been associated with severe disease in humans until the recent outbreaks, when it was linked to microcephaly in newborns in Brazil and to Guillain-Barre syndrome in adults in French Polynesia. Zika virus is related to dengue virus, and here we report that a subset of antibodies targeting a conformational epitope isolated from patients with dengue virus also potently neutralize Zika virus. The crystal structure of two of these antibodies in complex with the envelope protein of Zika virus reveals the details of a conserved epitope, which is also the site of interaction of the envelope protein dimer with the precursor membrane (prM) protein during virus maturation. Comparison of the Zika and dengue virus immunocomplexes provides a lead for rational, epitope-focused design of a universal vaccine capable of eliciting potent cross-neutralizing antibodies to protect simultaneously against both Zika and dengue virus infections.

450 citations

Journal ArticleDOI
Gytis Dudas1, Gytis Dudas2, Luiz Max Carvalho2, Trevor Bedford1, Andrew J. Tatem3, Guy Baele4, Nuno R. Faria5, Daniel J. Park6, Jason T. Ladner7, Armando Arias8, Armando Arias9, Danny Asogun, Filip Bielejec4, Sarah L Caddy9, Matthew Cotten10, Matthew Cotten11, Jonathan D'ambrozio7, Simon Dellicour4, Antonino Di Caro, Joseph W. Diclaro, Sophie Duraffour12, Michael J. Elmore13, Lawrence Fakoli, Ousmane Faye14, Merle L. Gilbert7, Sahr M. Gevao15, Stephen K. Gire6, Stephen K. Gire16, Adrianne Gladden-Young6, Andreas Gnirke6, Augustine Goba, Donald S. Grant, Bart L. Haagmans10, Julian A. Hiscox17, Umaru Jah18, Jeffrey R. Kugelman7, Di Liu, Jia Lu9, Christine M. Malboeuf6, Suzanne Mate7, David A. Matthews19, Christian B. Matranga6, Luke W. Meredith9, Luke W. Meredith18, James Qu6, Joshua Quick20, Susan D. Pas10, My V. T. Phan10, My V. T. Phan11, Georgios Pollakis17, Chantal B.E.M. Reusken10, Mariano Sanchez-Lockhart7, Stephen F. Schaffner6, John S. Schieffelin, Rachel Sealfon21, Rachel Sealfon6, Etienne Simon-Loriere14, Etienne Simon-Loriere22, Saskia L. Smits10, Kilian Stoecker, Lucy Thorne9, Ekaete Alice Tobin, Mohamed A. Vandi, Simon J. Watson11, Kendra West6, Shannon L.M. Whitmer, Michael R. Wiley7, Sarah M. Winnicki6, Sarah M. Winnicki23, Shirlee Wohl16, Shirlee Wohl6, Roman Wölfel, Nathan L. Yozwiak6, Nathan L. Yozwiak16, Kristian G. Andersen24, Kristian G. Andersen25, Sylvia O. Blyden, Fatorma K. Bolay, Miles W. Carroll, Bernice Dahn, Boubacar Diallo26, Pierre Formenty26, Christophe Fraser5, George F. Gao27, Robert F. Garry, Ian Goodfellow9, Ian Goodfellow18, Stephan Günther12, Christian T. Happi, Edward C. Holmes28, Brima Kargbo, Sakoba Keita, Paul Kellam11, Paul Kellam29, Marion Koopmans10, Jens H. Kuhn30, Nicholas J. Loman20, N’Faly Magassouba, Dhamari Naidoo26, Stuart T. Nichol31, Tolbert Nyenswah, Gustavo Palacios7, Oliver G. Pybus5, Pardis C. Sabeti6, Pardis C. Sabeti16, Amadou A. Sall14, Ute Ströher31, Isatta Wurie15, Marc A. Suchard32, Philippe Lemey4, Andrew Rambaut2 
20 Apr 2017-Nature
TL;DR: It is revealed that this large epidemic was a heterogeneous and spatially dissociated collection of transmission clusters of varying size, duration and connectivity, which will help to inform interventions in future epidemics.
Abstract: The 2013-2016 West African epidemic caused by the Ebola virus was of unprecedented magnitude, duration and impact. Here we reconstruct the dispersal, proliferation and decline of Ebola virus throughout the region by analysing 1,610 Ebola virus genomes, which represent over 5% of the known cases. We test the association of geography, climate and demography with viral movement among administrative regions, inferring a classic 'gravity' model, with intense dispersal between larger and closer populations. Despite attenuation of international dispersal after border closures, cross-border transmission had already sown the seeds for an international epidemic, rendering these measures ineffective at curbing the epidemic. We address why the epidemic did not spread into neighbouring countries, showing that these countries were susceptible to substantial outbreaks but at lower risk of introductions. Finally, we reveal that this large epidemic was a heterogeneous and spatially dissociated collection of transmission clusters of varying size, duration and connectivity. These insights will help to inform interventions in future epidemics.

354 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI
TL;DR: It is shown that the SARS-CoV-2 spike protein is less stable than that of SARS -CoV, and limited cross-neutralization activities between SARS and COVID-19 patients’ sera showlimited cross- neutralization activities, suggesting that recovery from one infection might not protect against the other.
Abstract: Since 2002, beta coronaviruses (CoV) have caused three zoonotic outbreaks, SARS-CoV in 2002-2003, MERS-CoV in 2012, and the newly emerged SARS-CoV-2 in late 2019. However, little is currently known about the biology of SARS-CoV-2. Here, using SARS-CoV-2 S protein pseudovirus system, we confirm that human angiotensin converting enzyme 2 (hACE2) is the receptor for SARS-CoV-2, find that SARS-CoV-2 enters 293/hACE2 cells mainly through endocytosis, that PIKfyve, TPC2, and cathepsin L are critical for entry, and that SARS-CoV-2 S protein is less stable than SARS-CoV S. Polyclonal anti-SARS S1 antibodies T62 inhibit entry of SARS-CoV S but not SARS-CoV-2 S pseudovirions. Further studies using recovered SARS and COVID-19 patients' sera show limited cross-neutralization, suggesting that recovery from one infection might not protect against the other. Our results present potential targets for development of drugs and vaccines for SARS-CoV-2.

2,622 citations

Journal ArticleDOI
TL;DR: The key feature of RDP4 that differentiates it from other recombination detection tools is its flexibility, which can be run either in fully automated mode from the command line interface or with a graphically rich user interface that enables detailed exploration of both individual recombination events and overall recombination patterns.
Abstract: RDP4 is the latest version of recombination detection program (RDP), a Windows computer program that implements an extensive array of methods for detecting and visualising recombination in, and stripping evidence of recombination from, virus genome sequence alignments. RDP4 is capable of analysing twice as many sequences (up to 2,500) that are up to three times longer (up to 10 Mb) than those that could be analysed by older versions of the program. RDP4 is therefore also applicable to the analysis of bacterial full-genome sequence datasets. Other novelties in RDP4 include (1) the capacity to differentiate between recombination and genome segment reassortment, (2) the estimation of recombination breakpoint confidence intervals, (3) a variety of ‘recombination aware’ phylogenetic tree construction and comparison tools, (4) new matrix-based visualisation tools for examining both individual recombination events and the overall phylogenetic impacts of multiple recombination events and (5) new tests to detect the influences of gene arrangements, encoded protein structure, nucleic acid secondary structure, nucleotide composition, and nucleotide diversity on recombination breakpoint patterns. The key feature of RDP4 that differentiates it from other recombination detection tools is its flexibility. It can be run either in fully automated mode from the command line interface or with a graphically rich user interface that enables detailed exploration of both individual recombination events and overall recombination patterns.

2,386 citations

Journal ArticleDOI
TL;DR: The BEAST software package unifies molecular phylogenetic reconstruction with complex discrete and continuous trait evolution, divergence-time dating, and coalescent demographic models in an efficient statistical inference engine using Markov chain Monte Carlo integration.
Abstract: The Bayesian Evolutionary Analysis by Sampling Trees (BEAST) software package has become a primary tool for Bayesian phylogenetic and phylodynamic inference from genetic sequence data. BEAST unifies molecular phylogenetic reconstruction with complex discrete and continuous trait evolution, divergence-time dating, and coalescent demographic models in an efficient statistical inference engine using Markov chain Monte Carlo integration. A convenient, cross-platform, graphical user interface allows the flexible construction of complex evolutionary analyses.

2,184 citations