scispace - formally typeset
Search or ask a question

Showing papers by "Eugenia Kalnay published in 2002"


Book
01 Nov 2002
TL;DR: A comprehensive text and reference work on numerical weather prediction, first published in 2002, covers not only methods for numerical modeling, but also the important related areas of data assimilation and predictability.
Abstract: This comprehensive text and reference work on numerical weather prediction, first published in 2002, covers not only methods for numerical modeling, but also the important related areas of data assimilation and predictability. It incorporates all aspects of environmental computer modeling including an historical overview of the subject, equations of motion and their approximations, a modern and clear description of numerical methods, and the determination of initial conditions using weather observations (an important science known as data assimilation). Finally, this book provides a clear discussion of the problems of predictability and chaos in dynamical systems and how they can be applied to atmospheric and oceanic systems. Professors and students in meteorology, atmospheric science, oceanography, hydrology and environmental science will find much to interest them in this book, which can also form the basis of one or more graduate-level courses.

2,240 citations


Posted Content
TL;DR: A new, local formulation of the ensemble Kalman Filter approach for atmospheric data assimilation based on the hypothesis that, when the Earth's surface is divided up into local regions of moderate size, vectors of the forecast uncertainties in such regions tend to lie in a subspace of much lower dimension than that of the full atmospheric state vector of such a region.
Abstract: In this paper, we introduce a new, local formulation of the ensemble Kalman Filter approach for atmospheric data assimilation. Our scheme is based on the hypothesis that, when the Earth's surface is divided up into local regions of moderate size, vectors of the forecast uncertainties in such regions tend to lie in a subspace of much lower dimension than that of the full atmospheric state vector of such a region. Ensemble Kalman Filters, in general, assume that the analysis resulting from the data assimilation lies in the same subspace as the expected forecast error. Under our hypothesis the dimension of this subspace is low. This implies that operations only on relatively low dimensional matrices are required. Thus, the data analysis is done locally in a manner allowing massively parallel computation to be exploited. The local analyses are then used to construct global states for advancement to the next forecast time. The method, its potential advantages, properties, and implementation requirements are illustrated by numerical experiments on the Lorenz-96 model. It is found that accurate analysis can be achieved at a cost which is very modest compared to that of a full global ensemble Kalman Filter.

563 citations


Journal ArticleDOI
TL;DR: In this article, the origin and maintenance of the 1998 Oklahoma-Texas (OK-TX) drought were investigated using the National Centers for Environmental Prediction (NCEP) global and regional models.
Abstract: This study presents results from mechanistic experiments to clarify the origin and maintenance of the Oklahoma–Texas (OK–TX) drought of the 1998 summer, using the National Centers for Environmental Prediction (NCEP) global and regional models. In association with this unprecedented drought, three major mechanisms that can produce extended atmospheric anomalies have been identified: (i) sea surface temperature (SST) anomalies, (ii) soil moisture anomalies, and (iii) atmospheric initial conditions favorable to such a climate extreme even in the absence of surface forcing (i.e., internal forcing). The authors found that the SST anomalies during April–May 1998 established the large-scale conditions for the drought. However, the warm El Nino–Southern Oscillation (ENSO) SST anomalies over the central and eastern tropical Pacific alone did not play a major role in initiating the drought. The internal structure of atmospheric conditions played as significant a role as the SST anomalies over the globe. In...

50 citations


19 Mar 2002
TL;DR: This paper shows how the finding that vectors of the forecast uncertainties in such regions tend to lie in a subspace of much lower dimension than that of the full atmospheric state vector can be exploited to formulate a potentially accurate and efficient data assimilation technique.
Abstract: In this paper, we introduce a new, local formulation of the ensemble Kalman Filter approach for atmospheric data assimilation. Our scheme is based on the hypothesis that, when the Earth's surface is divided up into local regions of moderate size, vectors of the forecast uncertainties in such regions tend to lie in a subspace of much lower dimension than that of the full atmospheric state vector of such a region. Ensemble Kalman Filters, in general, assume that the analysis resulting from the data assimilation lies in the same subspace as the expected forecast error. Under our hypothesis the dimension of this subspace is low. This implies that operations only on relatively low dimensional matrices are required. Thus, the data analysis is done locally in a manner allowing massively parallel computation to be exploited. The local analyses are then used to construct global states for advancement to the next forecast time. The method, its potential advantages, properties, and implementation requirements are illustrated by numerical experiments on the Lorenz-96 model. It is found that accurate analysis can be achieved at a cost which is very modest compared to that of a full global ensemble Kalman Filter.

36 citations



Posted Content
19 Mar 2002
TL;DR: In this article, a local formulation of the Ensemble Kalman Filter approach for atmospheric data assimilation is proposed, which is based on the hypothesis that, when the Earth's surface is divided up into local regions of moderate size, vectors of the forecast uncertainties in such regions tend to lie in a subspace of much lower dimension than that of the full atmospheric state vector of such a region.
Abstract: In this paper, we introduce a new, local formulation of the ensemble Kalman Filter approach for atmospheric data assimilation. Our scheme is based on the hypothesis that, when the Earth's surface is divided up into local regions of moderate size, vectors of the forecast uncertainties in such regions tend to lie in a subspace of much lower dimension than that of the full atmospheric state vector of such a region. Ensemble Kalman Filters, in general, assume that the analysis resulting from the data assimilation lies in the same subspace as the expected forecast error. Under our hypothesis the dimension of this subspace is low. This implies that operations only on relatively low dimensional matrices are required. Thus, the data analysis is done locally in a manner allowing massively parallel computation to be exploited. The local analyses are then used to construct global states for advancement to the next forecast time. The method, its potential advantages, properties, and implementation requirements are illustrated by numerical experiments on the Lorenz-96 model. It is found that accurate analysis can be achieved at a cost which is very modest compared to that of a full global ensemble Kalman Filter.

28 citations