scispace - formally typeset
E

Eugenia Kalnay

Researcher at University of Maryland, College Park

Publications -  269
Citations -  56732

Eugenia Kalnay is an academic researcher from University of Maryland, College Park. The author has contributed to research in topics: Data assimilation & Ensemble Kalman filter. The author has an hindex of 61, co-authored 259 publications receiving 52574 citations. Previous affiliations of Eugenia Kalnay include Goddard Space Flight Center & Eötvös Loránd University.

Papers
More filters
Journal ArticleDOI

The NCEP/NCAR 40-Year Reanalysis Project

TL;DR: The NCEP/NCAR 40-yr reanalysis uses a frozen state-of-the-art global data assimilation system and a database as complete as possible, except that the horizontal resolution is T62 (about 210 km) as discussed by the authors.
Journal ArticleDOI

The NCEP–NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation

TL;DR: The National Centers for Environmental Prediction (NCEP) and National Center for Atmospheric Research (NCAR) have cooperated in a project to produce a retroactive record of more than 50 years of global analyses of atmospheric fields in support of the needs of the research and climate monitoring communities as mentioned in this paper.
Journal ArticleDOI

North american regional reanalysis

TL;DR: The North American Regional Reanalysis (NARR) project as mentioned in this paper uses the NCEP Eta model and its Data Assimilation System (at 32-km-45-layer resolution with 3-hourly output) to capture regional hydrological cycle, the diurnal cycle and other important features of weather and climate variability.
Book

Atmospheric Modeling, Data Assimilation and Predictability

TL;DR: A comprehensive text and reference work on numerical weather prediction, first published in 2002, covers not only methods for numerical modeling, but also the important related areas of data assimilation and predictability.
Journal ArticleDOI

Impact of urbanization and land-use change on climate

TL;DR: The difference between trends in observed surface temperatures in the continental United States and the corresponding trends in a reconstruction of surface temperatures determined from a reanalysis of global weather over the past 50 years is used to estimate the impact of land-use changes on surface warming.