scispace - formally typeset
Search or ask a question
Author

Eugenia Kalnay

Bio: Eugenia Kalnay is an academic researcher from University of Maryland, College Park. The author has contributed to research in topics: Data assimilation & Ensemble Kalman filter. The author has an hindex of 61, co-authored 259 publications receiving 52574 citations. Previous affiliations of Eugenia Kalnay include Goddard Space Flight Center & Eötvös Loránd University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a quasi-inverse approach for the forecast sensitivity problem is introduced, and then a closely related variational assimilation problem using the quasiinverse model is formulated (i.e., the model is integrated backward but changing the sign of the dissipation terms) in order to accelerate the solution of problems close to 4D-Var.
Abstract: Four-dimensional variational data assimilation (4D-Var) seeks to find an optimal initial field that minimizes a cost function defined as the squared distance between model solutions and observations within an assimilation window For a perfect linear model, Lorenc showed that the 4D-Var forecast at the end of the window coincides with a Kalman filter analysis if two conditions are fulfilled: (a) addition to the cost function of a term that measures the distance to the background at the beginning of the assimilation window, and (b) use of the Kalman filter background error covariance in this term The standard 4D-Var requires minimization algorithms along with adjoint models to compute gradient information needed for the minimization In this study, an alternative method is suggested based on the use of the quasi-inverse model that, for certain applications, may help accelerate the solution of problems close to 4D-Var The quasi-inverse approach for the forecast sensitivity problem is introduced, and then a closely related variational assimilation problem using the quasi-inverse model is formulated (ie, the model is integrated backward but changing the sign of the dissipation terms) It is shown that if the cost function has no background term, and has a complete set of observations (as assumed in many classical 4D-Var papers), the new method solves the 4D-Var-minimization problem efficiently, and is in fact equivalent to the Newton algorithm but without having to compute a Hessian If the background term is included but computed at the end of the interval, allowing the use of observations that are not complete, the minimization can still be carried out very efficiently In this case, however, the method is much closer to a 3D-Var formulation in which the analysis is attained through a model integration For this reason, the method is called ‘‘inverse 3D-Var’’ (I3D-Var) The I3D-Var method was applied to simple models (viscous Burgers’ equation and Lorenz model), and it was found that when the background term is ignored and complete fields of noisy observations are available at multiple times, the inverse 3D-Var method minimizes the same cost function as 4D-Var but converges much faster Tests with the Advanced Regional Prediction System (ARPS) indicate that I3D-Var is about twice as fast as the adjoint Newton method and many times faster than the quasi-Newton LBFGS algorithm, which uses the adjoint model Potential problems (including the growth of random errors during the integration back in time) and possible applications to preconditioning, and to problems such as storm-scale data assimilation and reanalysis are also discussed

45 citations

01 Dec 2018
TL;DR: A climate model with dynamic vegetation is used to show that large-scale installations of wind and solar farms covering the Sahara lead to a local temperature increase and more than a twofold precipitation increase, especially in the Sahel, through increased surface friction and reduced albedo.
Abstract: More energy, more rain Energy generation by wind and solar farms could reduce carbon emissions and thus mitigate anthropogenic climate change. But is this its only benefit? Li et al. conducted experiments using a climate model to show that the installation of large-scale wind and solar power generation facilities in the Sahara could cause more local rainfall, particularly in the neighboring Sahel region. This effect, caused by a combination of increased surface drag and reduced albedo, could increase coverage by vegetation, creating a positive feedback that would further increase rainfall. Science, this issue p. 1019 Large wind and solar farms could increase local rainfall and vegetation cover in the Sahara. Wind and solar farms offer a major pathway to clean, renewable energies. However, these farms would significantly change land surface properties, and, if sufficiently large, the farms may lead to unintended climate consequences. In this study, we used a climate model with dynamic vegetation to show that large-scale installations of wind and solar farms covering the Sahara lead to a local temperature increase and more than a twofold precipitation increase, especially in the Sahel, through increased surface friction and reduced albedo. The resulting increase in vegetation further enhances precipitation, creating a positive albedo–precipitation–vegetation feedback that contributes ~80% of the precipitation increase for wind farms. This local enhancement is scale dependent and is particular to the Sahara, with small impacts in other deserts.

42 citations

01 Jan 1985
TL;DR: In this article, a simulation system was implemented to develop realistic estimates of the impacts future data acquisition systems will have on large-scale numerical weather simulation, including passive IR and microwave satellite sensors, as well as active scatterometer and lidar sounders.
Abstract: The features and preliminary results from a simulation system being implemented to develop realistic estimates of the impacts future data acquisition systems will have on large-scale numerical weather simulation are described. The new instruments may include advanced passive IR and microwave satellite sensors, as well as active scatterometer and lidar sounders. A main goal of the impact study is to identify those sensor systems which will provide the most benefit. The realism of the study is being enhanced by assimilating as much real-world data as possible and generating global weather maps for comparison with maps generated on the bases on the projected new, higher resolution data. Early results have indicated a preference for higher resolution wind data than for temperature data for making 1-5 day forecasts. The prime instrument candidate for collecting the data is lidar, provided the sensor resolution design goals are met.

42 citations

Journal ArticleDOI
01 Nov 2019
TL;DR: The Ensemble Mars Atmosphere Reanalysis System (EMARS) dataset version 1.0 contains hourly gridded atmospheric variables for the planet Mars, spanning Mars Year (MY) 24 through 33 (1999 through 2017).
Abstract: The Ensemble Mars Atmosphere Reanalysis System (EMARS) dataset version 1.0 contains hourly gridded atmospheric variables for the planet Mars, spanning Mars Year (MY) 24 through 33 (1999 through 2017). A reanalysis represents the best estimate of the state of the atmosphere by combining observations that are sparse in space and time with a dynamical model and weighting them by their uncertainties. EMARS uses the Local Ensemble Transform Kalman Filter (LETKF) for data assimilation with the GFDL/NASA Mars Global Climate Model (MGCM). Observations that are assimilated include the Thermal Emission Spectrometer (TES) and Mars Climate Sounder (MCS) temperature retrievals. The dataset includes gridded fields of temperature, wind, surface pressure, as well as dust, water ice, CO2 surface ice and other atmospheric quantities. Reanalyses are useful for both science and engineering studies, including investigations of transient eddies, the polar vortex, thermal tides and dust storms, and during spacecraft operations.

41 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The NCEP/NCAR 40-yr reanalysis uses a frozen state-of-the-art global data assimilation system and a database as complete as possible, except that the horizontal resolution is T62 (about 210 km) as discussed by the authors.
Abstract: The NCEP and NCAR are cooperating in a project (denoted “reanalysis”) to produce a 40-year record of global analyses of atmospheric fields in support of the needs of the research and climate monitoring communities. This effort involves the recovery of land surface, ship, rawinsonde, pibal, aircraft, satellite, and other data; quality controlling and assimilating these data with a data assimilation system that is kept unchanged over the reanalysis period 1957–96. This eliminates perceived climate jumps associated with changes in the data assimilation system. The NCEP/NCAR 40-yr reanalysis uses a frozen state-of-the-art global data assimilation system and a database as complete as possible. The data assimilation and the model used are identical to the global system implemented operationally at the NCEP on 11 January 1995, except that the horizontal resolution is T62 (about 210 km). The database has been enhanced with many sources of observations not available in real time for operations, provided b...

28,145 citations

Journal ArticleDOI
TL;DR: ERA-Interim as discussed by the authors is the latest global atmospheric reanalysis produced by the European Centre for Medium-Range Weather Forecasts (ECMWF), which will extend back to the early part of the twentieth century.
Abstract: ERA-Interim is the latest global atmospheric reanalysis produced by the European Centre for Medium-Range Weather Forecasts (ECMWF). The ERA-Interim project was conducted in part to prepare for a new atmospheric reanalysis to replace ERA-40, which will extend back to the early part of the twentieth century. This article describes the forecast model, data assimilation method, and input datasets used to produce ERA-Interim, and discusses the performance of the system. Special emphasis is placed on various difficulties encountered in the production of ERA-40, including the representation of the hydrological cycle, the quality of the stratospheric circulation, and the consistency in time of the reanalysed fields. We provide evidence for substantial improvements in each of these aspects. We also identify areas where further work is needed and describe opportunities and objectives for future reanalysis projects at ECMWF. Copyright © 2011 Royal Meteorological Society

22,055 citations

Journal ArticleDOI
22 Jul 2005-Science
TL;DR: Global croplands, pastures, plantations, and urban areas have expanded in recent decades, accompanied by large increases in energy, water, and fertilizer consumption, along with considerable losses of biodiversity.
Abstract: Land use has generally been considered a local environmental issue, but it is becoming a force of global importance. Worldwide changes to forests, farmlands, waterways, and air are being driven by the need to provide food, fiber, water, and shelter to more than six billion people. Global croplands, pastures, plantations, and urban areas have expanded in recent decades, accompanied by large increases in energy, water, and fertilizer consumption, along with considerable losses of biodiversity. Such changes in land use have enabled humans to appropriate an increasing share of the planet’s resources, but they also potentially undermine the capacity of ecosystems to sustain food production, maintain freshwater and forest resources, regulate climate and air quality, and ameliorate infectious diseases. We face the challenge of managing trade-offs between immediate human needs and maintaining the capacity of the biosphere to provide goods and services in the long term.

10,117 citations

01 Jan 2007
TL;DR: Drafting Authors: Neil Adger, Pramod Aggarwal, Shardul Agrawala, Joseph Alcamo, Abdelkader Allali, Oleg Anisimov, Nigel Arnell, Michel Boko, Osvaldo Canziani, Timothy Carter, Gino Casassa, Ulisses Confalonieri, Rex Victor Cruz, Edmundo de Alba Alcaraz, William Easterling, Christopher Field, Andreas Fischlin, Blair Fitzharris.
Abstract: Drafting Authors: Neil Adger, Pramod Aggarwal, Shardul Agrawala, Joseph Alcamo, Abdelkader Allali, Oleg Anisimov, Nigel Arnell, Michel Boko, Osvaldo Canziani, Timothy Carter, Gino Casassa, Ulisses Confalonieri, Rex Victor Cruz, Edmundo de Alba Alcaraz, William Easterling, Christopher Field, Andreas Fischlin, Blair Fitzharris, Carlos Gay García, Clair Hanson, Hideo Harasawa, Kevin Hennessy, Saleemul Huq, Roger Jones, Lucka Kajfež Bogataj, David Karoly, Richard Klein, Zbigniew Kundzewicz, Murari Lal, Rodel Lasco, Geoff Love, Xianfu Lu, Graciela Magrín, Luis José Mata, Roger McLean, Bettina Menne, Guy Midgley, Nobuo Mimura, Monirul Qader Mirza, José Moreno, Linda Mortsch, Isabelle Niang-Diop, Robert Nicholls, Béla Nováky, Leonard Nurse, Anthony Nyong, Michael Oppenheimer, Jean Palutikof, Martin Parry, Anand Patwardhan, Patricia Romero Lankao, Cynthia Rosenzweig, Stephen Schneider, Serguei Semenov, Joel Smith, John Stone, Jean-Pascal van Ypersele, David Vaughan, Coleen Vogel, Thomas Wilbanks, Poh Poh Wong, Shaohong Wu, Gary Yohe

7,720 citations