scispace - formally typeset
Search or ask a question
Author

Eui Hyuk Jung

Bio: Eui Hyuk Jung is an academic researcher from University of Toronto. The author has contributed to research in topics: Perovskite (structure) & Polymer solar cell. The author has an hindex of 15, co-authored 23 publications receiving 7544 citations. Previous affiliations of Eui Hyuk Jung include Korea University & Seoul National University.

Papers
More filters
Journal ArticleDOI
30 Jun 2017-Science
TL;DR: The introduction of additional iodide ions into the organic cation solution, which is used to form the perovskite layers through an intramolecular exchanging process, decreases the concentration of deep-level defects, enabling the fabrication of PSCs with a certified power conversion efficiency.
Abstract: The formation of a dense and uniform thin layer on the substrates is crucial for the fabrication of high-performance perovskite solar cells (PSCs) containing formamidinium with multiple cations and mixed halide anions. The concentration of defect states, which reduce a cell’s performance by decreasing the open-circuit voltage and short-circuit current density, needs to be as low as possible. We show that the introduction of additional iodide ions into the organic cation solution, which are used to form the perovskite layers through an intramolecular exchanging process, decreases the concentration of deep-level defects. The defect-engineered thin perovskite layers enable the fabrication of PSCs with a certified power conversion efficiency of 22.1% in small cells and 19.7% in 1-square-centimeter cells.

4,603 citations

Journal ArticleDOI
TL;DR: Jeon et al. as discussed by the authors synthesize a fluorene-terminated hole-transporting material with a fine-tuned energy level and a high glass transition temperature to ensure highly efficient and thermally stable perovskite solar cells.
Abstract: Perovskite solar cells (PSCs) require both high efficiency and good long-term stability if they are to be commercialized. It is crucial to finely optimize the energy level matching between the perovskites and hole-transporting materials to achieve better performance. Here, we synthesize a fluorene-terminated hole-transporting material with a fine-tuned energy level and a high glass transition temperature to ensure highly efficient and thermally stable PSCs. We use this material to fabricate photovoltaic devices with 23.2% efficiency (under reverse scanning) with a steady-state efficiency of 22.85% for small-area (~0.094 cm2) cells and 21.7% efficiency (under reverse scanning) for large-area (~1 cm2) cells. We also achieve certified efficiencies of 22.6% (small-area cells, ~0.094 cm2) and 20.9% (large-area, ~1 cm2). The resultant device shows better thermal stability than the device with spiro-OMeTAD, maintaining almost 95% of its initial performance for more than 500 h after thermal annealing at 60 °C. Interfacial losses between device layers play a key role in determining characteristics of solar cells. Jeon et al. address this in perovskite solar cells by synthesizing a hole-transporting layer that is better matched to the surrounding layers, and show high-efficiency and high-stability devices.

1,771 citations

Journal ArticleDOI
01 Mar 2019-Nature
TL;DR: A double-layered halide architecture for perovskite solar cells enables the use of dopant-free poly(3-hexylthiophene) as a hole-transport material, forming stable and scalable devices with a certified power conversion efficiency of 22.7 per cent.
Abstract: Perovskite solar cells typically comprise electron- and hole-transport materials deposited on each side of a perovskite active layer. So far, only two organic hole-transport materials have led to state-of-the-art performance in these solar cells1: poly(triarylamine) (PTAA)2–5 and 2,2ʹ,7,7ʹ-tetrakis(N,N-di-p-methoxyphenylamine)-9,9ʹ-spirobifluorene (spiro-OMeTAD)6,7. However, these materials have several drawbacks in terms of commercialization, including high cost8, the need for hygroscopic dopants that trigger degradation of the perovskite layer9 and limitations in their deposition processes10. Poly(3-hexylthiophene) (P3HT) is an alternative hole-transport material with excellent optoelectronic properties11–13, low cost8,14 and ease of fabrication15–18, but so far the efficiencies of perovskite solar cells using P3HT have reached only around 16 per cent19. Here we propose a device architecture for highly efficient perovskite solar cells that use P3HT as a hole-transport material without any dopants. A thin layer of wide-bandgap halide perovskite is formed on top of the narrow-bandgap light-absorbing layer by an in situ reaction of n-hexyl trimethyl ammonium bromide on the perovskite surface. Our device has a certified power conversion efficiency of 22.7 per cent with hysteresis of ±0.51 per cent; exhibits good stability at 85 per cent relative humidity without encapsulation; and upon encapsulation demonstrates long-term operational stability for 1,370 hours under 1-Sun illumination at room temperature, maintaining 95 per cent of the initial efficiency. We extend our platform to large-area modules (24.97 square centimetres)—which are fabricated using a scalable bar-coating method for the deposition of P3HT—and achieve a power conversion efficiency of 16.0 per cent. Realizing the potential of P3HT as a hole-transport material by using a wide-bandgap halide could be a valuable direction for perovskite solar-cell research. A double-layered halide architecture for perovskite solar cells enables the use of dopant-free poly(3-hexylthiophene) as a hole-transport material, forming stable and scalable devices with a certified power conversion efficiency of 22.7 per cent.

1,681 citations

Journal ArticleDOI
TL;DR: A polymer with four fluorine substitutions exhibits the best n-type charge-transporting behavior with an electron mobility of 2.36 cm(2) V(-1) s(1).
Abstract: Copolymers composed of diketopyrrolopyrrole and phenylene units with different numbers of fluorine subsitution are synthesized. When the effect of the number of fluorine substitution on the n-channel transporting property is investigated, the polymer with four fluorine substitutions exhibits the best n-type charge-transporting behavior with an electron mobility of 2.36 cm(2) V(-1) s(1).

250 citations

Journal ArticleDOI
TL;DR: Tin oxide (SnO2) has recently emerged as a promising electron transport layer for perovskite solar cells (PSCs) in light of the material's optical and electronic properties and its low-temperature as mentioned in this paper.
Abstract: Tin oxide (SnO2) has recently emerged as a promising electron transport layer for perovskite solar cells (PSCs) in light of the material’s optical and electronic properties and its low-temperature ...

181 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, an organic halide salt phenethylammonium iodide (PEAI) was used on HC(NH2)2-CH3NH3 mixed perovskite films for surface defect passivation.
Abstract: In recent years, the power conversion efficiency of perovskite solar cells has increased to reach over 20%. Finding an effective means of defect passivation is thought to be a promising route for bringing further increases in the power conversion efficiency and the open-circuit voltage (VOC) of perovskite solar cells. Here, we report the use of an organic halide salt phenethylammonium iodide (PEAI) on HC(NH2)2–CH3NH3 mixed perovskite films for surface defect passivation. We find that PEAI can form on the perovskite surface and results in higher-efficiency cells by reducing the defects and suppressing non-radiative recombination. As a result, planar perovskite solar cells with a certificated efficiency of 23.32% (quasi-steady state) are obtained. In addition, a VOC as high as 1.18 V is achieved at the absorption threshold of 1.53 eV, which is 94.4% of the Shockley–Queisser limit VOC (1.25 V). Planar perovskite solar cells that have been passivated using the organic halide salt phenethylammonium iodide are shown to have suppressed non-radiative recombination and operate with a certified power conversion efficiency of 23.3%.

3,064 citations

Journal ArticleDOI
01 Oct 2018-Nature
TL;DR: In this article, the authors describe visible-light-emitting perovskite LEDs that surpass the quantum efficiency milestone of 20.3 per cent, which is achieved by a new strategy for managing the compositional distribution in the device.
Abstract: Metal halide perovskite materials are an emerging class of solution-processable semiconductors with considerable potential for use in optoelectronic devices1–3. For example, light-emitting diodes (LEDs) based on these materials could see application in flat-panel displays and solid-state lighting, owing to their potential to be made at low cost via facile solution processing, and could provide tunable colours and narrow emission line widths at high photoluminescence quantum yields4–8. However, the highest reported external quantum efficiencies of green- and red-light-emitting perovskite LEDs are around 14 per cent7,9 and 12 per cent8, respectively—still well behind the performance of organic LEDs10–12 and inorganic quantum dot LEDs13. Here we describe visible-light-emitting perovskite LEDs that surpass the quantum efficiency milestone of 20 per cent. This achievement stems from a new strategy for managing the compositional distribution in the device—an approach that simultaneously provides high luminescence and balanced charge injection. Specifically, we mixed a presynthesized CsPbBr3 perovskite with a MABr additive (where MA is CH3NH3), the differing solubilities of which yield sequential crystallization into a CsPbBr3/MABr quasi-core/shell structure. The MABr shell passivates the nonradiative defects that would otherwise be present in CsPbBr3 crystals, boosting the photoluminescence quantum efficiency, while the MABr capping layer enables balanced charge injection. The resulting 20.3 per cent external quantum efficiency represents a substantial step towards the practical application of perovskite LEDs in lighting and display. A strategy for managing the compositional distribution in metal halide perovskite light-emitting diodes enables them to surpass 20% external quantum efficiency—a step towards their practical application in lighting and displays.

2,346 citations

Journal ArticleDOI
TL;DR: This work aims to provide a comprehensive overview of electrospun nanofibers, including the principle, methods, materials, and applications, and highlights the most relevant and recent advances related to the applications by focusing on the most representative examples.
Abstract: Electrospinning is a versatile and viable technique for generating ultrathin fibers. Remarkable progress has been made with regard to the development of electrospinning methods and engineering of electrospun nanofibers to suit or enable various applications. We aim to provide a comprehensive overview of electrospinning, including the principle, methods, materials, and applications. We begin with a brief introduction to the early history of electrospinning, followed by discussion of its principle and typical apparatus. We then discuss its renaissance over the past two decades as a powerful technology for the production of nanofibers with diversified compositions, structures, and properties. Afterward, we discuss the applications of electrospun nanofibers, including their use as "smart" mats, filtration membranes, catalytic supports, energy harvesting/conversion/storage components, and photonic and electronic devices, as well as biomedical scaffolds. We highlight the most relevant and recent advances related to the applications of electrospun nanofibers by focusing on the most representative examples. We also offer perspectives on the challenges, opportunities, and new directions for future development. At the end, we discuss approaches to the scale-up production of electrospun nanofibers and briefly discuss various types of commercial products based on electrospun nanofibers that have found widespread use in our everyday life.

2,289 citations

Journal ArticleDOI
TL;DR: Jeon et al. as discussed by the authors synthesize a fluorene-terminated hole-transporting material with a fine-tuned energy level and a high glass transition temperature to ensure highly efficient and thermally stable perovskite solar cells.
Abstract: Perovskite solar cells (PSCs) require both high efficiency and good long-term stability if they are to be commercialized. It is crucial to finely optimize the energy level matching between the perovskites and hole-transporting materials to achieve better performance. Here, we synthesize a fluorene-terminated hole-transporting material with a fine-tuned energy level and a high glass transition temperature to ensure highly efficient and thermally stable PSCs. We use this material to fabricate photovoltaic devices with 23.2% efficiency (under reverse scanning) with a steady-state efficiency of 22.85% for small-area (~0.094 cm2) cells and 21.7% efficiency (under reverse scanning) for large-area (~1 cm2) cells. We also achieve certified efficiencies of 22.6% (small-area cells, ~0.094 cm2) and 20.9% (large-area, ~1 cm2). The resultant device shows better thermal stability than the device with spiro-OMeTAD, maintaining almost 95% of its initial performance for more than 500 h after thermal annealing at 60 °C. Interfacial losses between device layers play a key role in determining characteristics of solar cells. Jeon et al. address this in perovskite solar cells by synthesizing a hole-transporting layer that is better matched to the surrounding layers, and show high-efficiency and high-stability devices.

1,771 citations

Journal ArticleDOI
TL;DR: The fundamentals, recent research progress, present status, and views on future prospects of perovskite-based photovoltaics, with discussions focused on strategies to improve both intrinsic and extrinsic (environmental) stabilities of high-efficiency devices are described.
Abstract: The photovoltaics of organic–inorganic lead halide perovskite materials have shown rapid improvements in solar cell performance, surpassing the top efficiency of semiconductor compounds such as CdTe and CIGS (copper indium gallium selenide) used in solar cells in just about a decade. Perovskite preparation via simple and inexpensive solution processes demonstrates the immense potential of this thin-film solar cell technology to become a low-cost alternative to the presently commercially available photovoltaic technologies. Significant developments in almost all aspects of perovskite solar cells and discoveries of some fascinating properties of such hybrid perovskites have been made recently. This Review describes the fundamentals, recent research progress, present status, and our views on future prospects of perovskite-based photovoltaics, with discussions focused on strategies to improve both intrinsic and extrinsic (environmental) stabilities of high-efficiency devices. Strategies and challenges regardi...

1,720 citations