scispace - formally typeset
Search or ask a question
Author

Eun Chung Park

Bio: Eun Chung Park is an academic researcher from National Institutes of Health. The author has contributed to research in topics: Viral pathogenesis & Population. The author has an hindex of 1, co-authored 1 publications receiving 606 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: What is known about host switching leading to viral emergence from known examples is reviewed, considering the evolutionary mechanisms, virus-host interactions, host range barriers to infection, and processes that allow efficient host-to-host transmission in the new host population.
Abstract: Host range is a viral property reflecting natural hosts that are infected either as part of a principal transmission cycle or, less commonly, as "spillover" infections into alternative hosts. Rarely, viruses gain the ability to spread efficiently within a new host that was not previously exposed or susceptible. These transfers involve either increased exposure or the acquisition of variations that allow them to overcome barriers to infection of the new hosts. In these cases, devastating outbreaks can result. Steps involved in transfers of viruses to new hosts include contact between the virus and the host, infection of an initial individual leading to amplification and an outbreak, and the generation within the original or new host of viral variants that have the ability to spread efficiently between individuals in populations of the new host. Here we review what is known about host switching leading to viral emergence from known examples, considering the evolutionary mechanisms, virus-host interactions, host range barriers to infection, and processes that allow efficient host-to-host transmission in the new host population.

695 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors review what is known about the pathogens that emerge, the hosts that they originate in, and the factors that drive their emergence and discuss challenges to their control and new efforts to predict pandemics.

751 citations

Journal ArticleDOI
21 Jun 2017-Nature
TL;DR: It is demonstrated that bats harbour a significantly higher proportion of zoonotic viruses than all other mammalian orders, and the taxa and geographic regions with the largest estimated number of ‘missing viruses’ and ‘ Missing zoonoses’ are identified and therefore of highest value for future surveillance.
Abstract: The majority of human emerging infectious diseases are zoonotic, with viruses that originate in wild mammals of particular concern (for example, HIV, Ebola and SARS). Understanding patterns of viral diversity in wildlife and determinants of successful cross-species transmission, or spillover, are therefore key goals for pandemic surveillance programs. However, few analytical tools exist to identify which host species are likely to harbour the next human virus, or which viruses can cross species boundaries. Here we conduct a comprehensive analysis of mammalian host-virus relationships and show that both the total number of viruses that infect a given species and the proportion likely to be zoonotic are predictable. After controlling for research effort, the proportion of zoonotic viruses per species is predicted by phylogenetic relatedness to humans, host taxonomy and human population within a species range-which may reflect human-wildlife contact. We demonstrate that bats harbour a significantly higher proportion of zoonotic viruses than all other mammalian orders. We also identify the taxa and geographic regions with the largest estimated number of 'missing viruses' and 'missing zoonoses' and therefore of highest value for future surveillance. We then show that phylogenetic host breadth and other viral traits are significant predictors of zoonotic potential, providing a novel framework to assess if a newly discovered mammalian virus could infect people.

742 citations

Journal ArticleDOI
TL;DR: The evolution of influenza A viruses in their reservoir hosts is reviewed and genetic changes associated with introduction of novel viruses into humans, leading to pandemics and the establishment of seasonal viruses are discussed.

725 citations

Journal ArticleDOI
TL;DR: A synthetic framework for animal-to-human transmission that integrates the relevant mechanisms reveals that all zoonotic pathogens must overcome a hierarchical series of barriers to cause spillover infections in humans.
Abstract: Zoonotic spillover, which is the transmission of a pathogen from a vertebrate animal to a human, presents a global public health burden but is a poorly understood phenomenon. Zoonotic spillover requires several factors to align, including the ecological, epidemiological and behavioural determinants of pathogen exposure, and the within-human factors that affect susceptibility to infection. In this Opinion article, we propose a synthetic framework for animal-to-human transmission that integrates the relevant mechanisms. This framework reveals that all zoonotic pathogens must overcome a hierarchical series of barriers to cause spillover infections in humans. Understanding how these barriers are functionally and quantitatively linked, and how they interact in space and time, will substantially improve our ability to predict or prevent spillover events. This work provides a foundation for transdisciplinary investigation of spillover and synthetic theory on zoonotic transmission.

613 citations

Journal ArticleDOI
TL;DR: Major discoveries include evidence of an origin of Hendra- and Nipah virus in Africa, identification of a bat virus conspecific with the human mumps virus, detection of close relatives of respiratory syncytial virus, mouse pneumonia- and canine distemper virus in bats, as well as direct evidence of Sendai virus in rodents.
Abstract: The large virus family Paramyxoviridae includes some of the most significant human and livestock viruses, such as measles-, distemper-, mumps-, parainfluenza-, Newcastle disease-, respiratory syncytial virus and metapneumoviruses. Here we identify an estimated 66 new paramyxoviruses in a worldwide sample of 119 bat and rodent species (9,278 individuals). Major discoveries include evidence of an origin of Hendra- and Nipah virus in Africa, identification of a bat virus conspecific with the human mumps virus, detection of close relatives of respiratory syncytial virus, mouse pneumonia- and canine distemper virus in bats, as well as direct evidence of Sendai virus in rodents. Phylogenetic reconstruction of host associations suggests a predominance of host switches from bats to other mammals and birds. Hypothesis tests in a maximum likelihood framework permit the phylogenetic placement of bats as tentative hosts at ancestral nodes to both the major Paramyxoviridae subfamilies (Paramyxovirinae and Pneumovirinae). Future attempts to predict the emergence of novel paramyxoviruses in humans and livestock will have to rely fundamentally on these data.

566 citations