scispace - formally typeset
Search or ask a question
Author

Eun-Jeong Yoon

Bio: Eun-Jeong Yoon is an academic researcher from Pasteur Institute. The author has contributed to research in topics: Acinetobacter baumannii & Medicine. The author has an hindex of 11, co-authored 13 publications receiving 804 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The data suggest that A. baumannii arose from an ancient population bottleneck followed by population expansion under strong purifying selection, and the outstanding diversification of the species occurred largely by horizontal transfer at specific hotspots preferentially located close to the replication terminus.
Abstract: Bacterial genomics has greatly expanded our understanding of microdiversification patterns within a species, but analyses at higher taxonomical levels are necessary to understand and predict the independent rise of pathogens in a genus We have sampled, sequenced, and assessed the diversity of genomes of validly named and tentative species of the Acinetobacter genus, a clade including major nosocomial pathogens and biotechnologically important species We inferred a robust global phylogeny and delimited several new putative species The genus is very ancient and extremely diverse: Genomes of highly divergent species share more orthologs than certain strains within a species We systematically characterized elements and mechanisms driving genome diversification, such as conjugative elements, insertion sequences, and natural transformation We found many error-prone polymerases that may play a role in resistance to toxins, antibiotics, and in the generation of genetic variation Surprisingly, temperate phages, poorly studied in Acinetobacter, were found to account for a significant fraction of most genomes Accordingly, many genomes encode clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems with some of the largest CRISPR-arrays found so far in bacteria Integrons are strongly overrepresented in Acinetobacter baumannii, which correlates with its frequent resistance to antibiotics Our data suggest that A baumannii arose from an ancient population bottleneck followed by population expansion under strong purifying selection The outstanding diversification of the species occurred largely by horizontal transfer, including some allelic recombination, at specific hotspots preferentially located close to the replication terminus Our work sets a quantitative basis to understand the diversification of Acinetobacter into emerging resistant and versatile pathogens

218 citations

Journal ArticleDOI
TL;DR: The high incidence of AdeABC efflux pump overexpression in MDR A. baumannii is outlined as a result of a variety of single mutations in the corresponding two-component regulatory system.
Abstract: Increased expression of chromosomal genes for resistance-nodulation-cell division (RND)-type efflux systems plays a major role in the multidrug resistance (MDR) of Acinetobacter baumannii. However, the relative contributions of the three most prevalent pumps, AdeABC, AdeFGH, and AdeIJK, have not been evaluated in clinical settings. We have screened 14 MDR clinical isolates shown to be distinct on the basis of multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) for the presence and overexpression of the three Ade efflux systems and analyzed the sequences of the regulators AdeRS, a two-component system, for AdeABC and AdeL, a LysR-type regulator, for AdeFGH. Gene adeB was detected in 13 of 14 isolates, and adeG and the intrinsic adeJ gene were detected in all strains. Significant overexpression of adeB was observed in 10 strains, whereas only 7 had moderately increased levels of expression of AdeFGH, and none overexpressed AdeIJK. Thirteen strains had reduced susceptibility to tigecycline, but there was no correlation between tigecycline MICs and the levels of AdeABC expression, suggesting the presence of other mechanisms for tigecycline resistance. No mutations were found in the highly conserved LysR regulator of the nine strains expressing AdeFGH. In contrast, functional mutations were found in conserved domains of AdeRS in all the strains that overexpressed AdeABC with two mutational hot spots, one in AdeS near histidine 149 suggesting convergent evolution and the other in the DNA binding domain of AdeR compatible with horizontal gene transfer. This report outlines the high incidence of AdeABC efflux pump overexpression in MDR A. baumannii as a result of a variety of single mutations in the corresponding two-component regulatory system.

194 citations

Journal ArticleDOI
01 May 2015-Mbio
TL;DR: It thus appears that alteration in the expression of efflux systems leads to multiple changes in the relationship between the host and its environment, in addition to antibiotic resistance.
Abstract: Acinetobacter baumannii is a nosocomial pathogen of increasing importance due to its multiple resistance to antibiotics and ability to survive in the hospital environment linked to its capacity to form biofilms. To fully characterize the contribution of AdeABC, AdeFGH, and AdeIJK resistance-nodulation-cell division (RND)-type efflux systems to acquired and intrinsic resistance, we constructed, from an entirely sequenced susceptible A. baumannii strain, a set of isogenic mutants overexpressing each system following introduction of a point mutation in their cognate regulator or a deletion for the pump by allelic replacement. Pairwise comparison of every derivative with the parental strain indicated that AdeABC and AdeFGH are tightly regulated and contribute to acquisition of antibiotic resistance when overproduced. AdeABC had a broad substrate range, including β-lactams, fluoroquinolones, tetracyclines-tigecycline, macrolides-lincosamides, and chloramphenicol, and conferred clinical resistance to aminoglycosides. Importantly, when combined with enzymatic resistance to carbapenems and aminoglycosides, this pump contributed in a synergistic fashion to the level of resistance of the host. In contrast, AdeIJK was expressed constitutively and was responsible for intrinsic resistance to the same major drug classes as AdeABC as well as antifolates and fusidic acid. Surprisingly, overproduction of AdeABC and AdeIJK altered bacterial membrane composition, resulting in decreased biofilm formation but not motility. Natural transformation and plasmid transfer were diminished in recipients overproducing AdeABC. It thus appears that alteration in the expression of efflux systems leads to multiple changes in the relationship between the host and its environment, in addition to antibiotic resistance. IMPORTANCE Increased expression of chromosomal genes for RND-type efflux systems plays a major role in bacterial multidrug resistance. Acinetobacter baumannii has recently emerged as an important human pathogen responsible for epidemics of hospital-acquired infections. Besides its remarkable ability to horizontally acquire resistance determinants, it has a broad intrinsic resistance due to low membrane permeability, endogenous resistance genes, and antibiotic efflux. The study of isogenic mutants from a susceptible A. baumannii clinical isolate overproducing or deleted for each of the three major RND-type pumps demonstrated their major contribution to intrinsic resistance and to the synergism between overproduction of an efflux system and acquisition of a resistance gene. We have also shown that modulation of expression of the structural genes for the efflux systems results in numerous alterations in membrane-associated cellular functions, in particular, in a decrease in biofilm formation and resistance gene acquisition.

159 citations

Journal ArticleDOI
TL;DR: Insight is provided into the in vivo evolution of colistin resistance in a series of XDR A. baumannii isolates recovered during therapy of infections and the importance of antibiotic stewardship and surveillance is emphasized.
Abstract: Background. Colistin resistance is of concern since it is increasingly needed to treat infections caused by bacteria resistant to all other antibiotics and has been associated with poorer outcomes. Longitudinal data from in vivo series are sparse. Methods. Under a quality-improvement directive to intensify infection-control measures, extremely drug-resistant (XDR) bacteria undergo phenotypic and molecular analysis. Results. Twenty-eight XDR Acinetobacter baumannii isolates were longitudinally recovered during colistin therapy. Fourteen were susceptible to colistin, and 14 were resistant to colistin. Acquisition of colistin resistance did not alter resistance to other antibiotics. Isolates had low minimum inhibitory concentrations of an investigational aminoglycoside, belonged to multi-locus sequence type 94, were indistinguishable by pulsed-field gel electrophoresis and optical mapping, and harbored a novel pmrC1A1B allele. Colistin resistance was associated with point mutations in the pmrA1 and/or pmrB genes. Additional pmrC homologs, designated eptA-1 and eptA-2, were at distant locations from the operon. Compared with colistin-susceptible isolates, colistin-resistant isolates displayed significantly enhanced expression of pmrC1A1B, eptA-1, and eptA-2; lower growth rates; and lowered fitness. Phylogenetic analysis suggested that colistin resistance emerged from a single progenitor colistin-susceptible isolate. Conclusions. We provide insights into the in vivo evolution of colistin resistance in a series of XDR A. baumannii isolates recovered during therapy of infections and emphasize the importance of antibiotic stewardship and surveillance.

146 citations

Journal ArticleDOI
01 May 2014-Mbio
TL;DR: Gene amplification, with an associated rise in tobramycin MICs, could be readily reproduced in vitro from initially susceptible strains exposed to increasing concentrations of tobramYcin, suggesting that gene amplification in A. baumannii may be a more common mechanism than currently believed.
Abstract: Gene amplification is believed to play an important role in antibiotic resistance but has been rarely documented in clinical settings because of its unstable nature. We report a rise in MICs from 0.5 to 16 μg/ml in successive Acinetobacter baumannii isolated over 4 days from a patient being treated with tobramycin for an infection by multidrug-resistant A. baumannii, resulting in therapeutic failure. Isolates were characterized by whole-genome sequencing, real-time and reverse transcriptase PCR, and growth assays to determine the mechanism of tobramycin resistance and its fitness cost. Tobramycin resistance was associated with two amplification events of different chromosomal fragments containing the aphA1 aminoglycoside resistance gene part of transposon Tn6020. The first amplification event involved low amplification (6 to 10 copies) of a large DNA fragment that was unstable and conferred tobramycin MICs of ≤ 8 μg/ml. The second event involved moderate (10 to 30 copies) or high (40 to 110 copies) amplification of Tn6020. High copy numbers were associated with tobramycin MICs of 16 μg/ml, impaired fitness, and genetic instability, whereas lower copy numbers resulted in tobramycin MICs of ≤8 μg/ml and no fitness cost and were stably maintained in vitro. Exposure in vitro to tobramycin of the initial susceptible isolate and of the A. baumannii AB0057 reference strain led to similar aphA1 amplifications and elevated tobramycin MICs. To the best of our knowledge, this is the first report of in vivo development of antibiotic resistance secondary to gene amplifications resulting in therapy failure. IMPORTANCE A combination of whole-genome sequencing and mapping were used to detect an antibiotic resistance mechanism, gene amplification, which has been presumed for a long time to be of major importance but has rarely been reported in clinical settings because of its unstable nature. Two gene amplification events in a patient with an Acinetobacter baumannii infection treated with tobramycin were identified. One gene amplification event led to high levels of resistance and was rapidly reversible, while the second event led to low and more stable resistance since it incurred low fitness cost on the host. Gene amplification, with an associated rise in tobramycin MICs, could be readily reproduced in vitro from initially susceptible strains exposed to increasing concentrations of tobramycin, suggesting that gene amplification in A. baumannii may be a more common mechanism than currently believed. This report underscores the importance of rapid molecular techniques for surveillance of drug resistance.

67 citations


Cited by
More filters
Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

Journal Article
TL;DR: FastTree as mentioned in this paper uses sequence profiles of internal nodes in the tree to implement neighbor-joining and uses heuristics to quickly identify candidate joins, then uses nearest-neighbor interchanges to reduce the length of the tree.
Abstract: Gene families are growing rapidly, but standard methods for inferring phylogenies do not scale to alignments with over 10,000 sequences. We present FastTree, a method for constructing large phylogenies and for estimating their reliability. Instead of storing a distance matrix, FastTree stores sequence profiles of internal nodes in the tree. FastTree uses these profiles to implement neighbor-joining and uses heuristics to quickly identify candidate joins. FastTree then uses nearest-neighbor interchanges to reduce the length of the tree. For an alignment with N sequences, L sites, and a different characters, a distance matrix requires O(N^2) space and O(N^2 L) time, but FastTree requires just O( NLa + N sqrt(N) ) memory and O( N sqrt(N) log(N) L a ) time. To estimate the tree's reliability, FastTree uses local bootstrapping, which gives another 100-fold speedup over a distance matrix. For example, FastTree computed a tree and support values for 158,022 distinct 16S ribosomal RNAs in 17 hours and 2.4 gigabytes of memory. Just computing pairwise Jukes-Cantor distances and storing them, without inferring a tree or bootstrapping, would require 17 hours and 50 gigabytes of memory. In simulations, FastTree was slightly more accurate than neighbor joining, BIONJ, or FastME; on genuine alignments, FastTree's topologies had higher likelihoods. FastTree is available at http://microbesonline.org/fasttree.

2,436 citations

Journal ArticleDOI
TL;DR: This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps, with particular focus on AcrAB-TolC and Mex pumps.
Abstract: The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps.

1,016 citations

Journal ArticleDOI
TL;DR: Current knowledge concerning the different strategies bacteria employ to resist the activities of polymyxins are summarized and increased understanding of these mechanisms is extremely vital and timely to facilitate studies of antimicrobial peptides and find new potential drugs targeting clinically relevant Gram-negative bacteria.
Abstract: Polymyxins are polycationic antimicrobial peptides that are currently the last-resort antibiotics for the treatment of multidrug-resistant, Gram-negative bacterial infections. The reintroduction of polymyxins for antimicrobial therapy has been followed by an increase in reports of resistance among Gram-negative bacteria. Some bacteria, such as Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii, develop resistance to polymyxins in a process referred to as acquired resistance, whereas other bacteria, such as Proteus spp., Serratia spp. and Burkholderia spp., are naturally resistant to these drugs. Reports of polymyxin resistance in clinical isolates have recently increased, including acquired and intrinsically resistant pathogens. This increase is considered a serious issue, prompting concern due to the low number of currently available effective antibiotics. This review summarizes current knowledge concerning the different strategies bacteria employ to resist the activities of polymyxins. Gram-negative bacteria employ several strategies to protect themselves from polymyxin antibiotics (polymyxin B and colistin), including a variety of lipopolysaccharide (LPS) modifications, such as modifications of lipid A with phosphoethanolamine and 4-amino-4-deoxy-L-arabinose, in addition to the use of efflux pumps, the formation of capsules and overexpression of the outer membrane protein OprH, which are all effectively regulated at the molecular level. The increased understanding of these mechanisms is extremely vital and timely to facilitate studies of antimicrobial peptides and find new potential drugs targeting clinically relevant Gram-negative bacteria.

988 citations

Journal ArticleDOI
TL;DR: Genotypic and phenotypic methods that provide relevant information for diagnostic laboratories are presented and recent works in relation to recently identified mechanisms of polymyxin resistance, including chromosomally encoded resistance traits as well as the recently identified plasmid-encoded polymyXin resistance determinant MCR-1 are presented.
Abstract: Polymyxins are well-established antibiotics that have recently regained significant interest as a consequence of the increasing incidence of infections due to multidrug-resistant Gram-negative bacteria. Colistin and polymyxin B are being seriously reconsidered as last-resort antibiotics in many areas where multidrug resistance is observed in clinical medicine. In parallel, the heavy use of polymyxins in veterinary medicine is currently being reconsidered due to increased reports of polymyxin-resistant bacteria. Susceptibility testing is challenging with polymyxins, and currently available techniques are presented here. Genotypic and phenotypic methods that provide relevant information for diagnostic laboratories are presented. This review also presents recent works in relation to recently identified mechanisms of polymyxin resistance, including chromosomally encoded resistance traits as well as the recently identified plasmid-encoded polymyxin resistance determinant MCR-1. Epidemiological features summarizing the current knowledge in that field are presented.

922 citations