scispace - formally typeset
Search or ask a question
Author

Eun Sang Choi

Bio: Eun Sang Choi is an academic researcher from Florida State University. The author has contributed to research in topics: Magnetic field & Antiferromagnetism. The author has an hindex of 40, co-authored 285 publications receiving 6609 citations. Previous affiliations of Eun Sang Choi include University of Notre Dame & Northwest University (United States).


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the thermal and electrical properties of single wall carbon nanotube (CNT)-polymer composites are significantly enhanced by magnetic alignment during processing, and the electrical transport properties are mainly governed by the hopping conduction with localization lengths comparable to bundle diameters.
Abstract: We show that the thermal and electrical properties of single wall carbon nanotube (CNT)-polymer composites are significantly enhanced by magnetic alignment during processing. The electrical transport properties of the composites are mainly governed by the hopping conduction with localization lengths comparable to bundle diameters. The bundling of nanotubes during the composite processing is an important factor for electrical, and in particular, for thermal transport properties. Better CNT isolation will be needed to reach the theoretical thermal conductivity limit for CNT composites.

542 citations

Journal ArticleDOI
21 Jul 2017-Science
TL;DR: In this paper, the authors report transport measurements that suggest the existence of one-dimensional chiral Majorana fermion modes in the hybrid system of a quantum anomalous Hall insulator thin film coupled with a superconductor.
Abstract: Majorana fermion is a hypothetical particle that is its own antiparticle. We report transport measurements that suggest the existence of one-dimensional chiral Majorana fermion modes in the hybrid system of a quantum anomalous Hall insulator thin film coupled with a superconductor. As the external magnetic field is swept, half-integer quantized conductance plateaus are observed at the locations of magnetization reversals, giving a distinct signature of the Majorana fermion modes. This transport signature is reproducible over many magnetic field sweeps and appears at different temperatures. This finding may open up an avenue to control Majorana fermions for implementing robust topological quantum computing.

542 citations

Journal ArticleDOI
TL;DR: In this article, a collection of Majorana fermions living in a one-dimensional transport channel at the boundary of a superconducting quantum anomalous Hall insulator thin film is demonstrated.
Abstract: After the recognition of the possibility to implement Majorana fermions using the building blocks of solid-state matters, the detection of this peculiar particle has been an intense focus of research. Here we experimentally demonstrate a collection of Majorana fermions living in a one-dimensional transport channel at the boundary of a superconducting quantum anomalous Hall insulator thin film. A series of topological phase changes are controlled by the reversal of the magnetization, where a half-integer quantized conductance plateau (0.5e2/h) is observed as a clear signature of the Majorana phase. This transport signature can be well repeated during many magnetic reversal sweeps, and can be tracked at different temperatures, providing a promising evidence of the chiral Majorana edge modes in the system.

450 citations

Journal ArticleDOI
TL;DR: In this article, a novel technical approach has been developed to produce highly loaded and aligned SWNT (single wall nanotubes) nanocomposites by infiltrating SWNT mats with a low viscosity resin solution.

203 citations

Journal ArticleDOI
17 Jan 2019-Nature
TL;DR: Evidence of a new type of quantum Hall effect, based on Weyl orbits in nanostructures of the three-dimensional topological semimetal Cd3As2, is reported, which finds that the quantum Hall transport is strongly modulated by the sample thickness.
Abstract: Discovered decades ago, the quantum Hall effect remains one of the most studied phenomena in condensed matter physics and is relevant for research areas such as topological phases, strong electron correlations and quantum computing1-5. The quantized electron transport that is characteristic of the quantum Hall effect typically originates from chiral edge states-ballistic conducting channels that emerge when two-dimensional electron systems are subjected to large magnetic fields2. However, whether the quantum Hall effect can be extended to higher dimensions without simply stacking two-dimensional systems is unknown. Here we report evidence of a new type of quantum Hall effect, based on Weyl orbits in nanostructures of the three-dimensional topological semimetal Cd3As2. The Weyl orbits consist of Fermi arcs (open arc-like surface states) on opposite surfaces of the sample connected by one-dimensional chiral Landau levels along the magnetic field through the bulk6,7. This transport through the bulk results in an additional contribution (compared to stacked two-dimensional systems and which depends on the sample thickness) to the quantum phase of the Weyl orbit. Consequently, chiral states can emerge even in the bulk. To measure these quantum phase shifts and search for the associated chiral modes in the bulk, we conduct transport experiments using wedge-shaped Cd3As2 nanostructures with variable thickness. We find that the quantum Hall transport is strongly modulated by the sample thickness. The dependence of the Landau levels on the magnitude and direction of the magnetic field and on the sample thickness agrees with theoretical predictions based on the modified Lifshitz-Onsager relation for the Weyl orbits. Nanostructures of topological semimetals thus provide a way of exploring quantum Hall physics in three-dimensional materials with enhanced tunability.

201 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: In this paper, ultrathin epitaxial graphite films were grown by thermal decomposition on the (0001) surface of 6H−SiC, and characterized by surface science techniques.
Abstract: We have produced ultrathin epitaxial graphite films which show remarkable 2D electron gas (2DEG) behavior. The films, composed of typically three graphene sheets, were grown by thermal decomposition on the (0001) surface of 6H−SiC, and characterized by surface science techniques. The low-temperature conductance spans a range of localization regimes according to the structural state (square resistance 1.5 kΩ to 225 kΩ at 4 K, with positive magnetoconductance). Low-resistance samples show characteristics of weak localization in two dimensions, from which we estimate elastic and inelastic mean free paths. At low field, the Hall resistance is linear up to 4.5 T, which is well-explained by n-type carriers of density 1012 cm-2 per graphene sheet. The most highly ordered sample exhibits Shubnikov−de Haas oscillations that correspond to nonlinearities observed in the Hall resistance, indicating a potential new quantum Hall system. We show that the high-mobility films can be patterned via conventional lithographic...

3,315 citations

Journal ArticleDOI
TL;DR: In this paper, an extended account of the various chemical strategies for grafting polymers onto carbon nanotubes and the manufacturing of carbon-nanotube/polymer nanocomposites is given.

2,766 citations

Journal ArticleDOI
TL;DR: Magnetic skyrmions are nanoscale spin configurations that hold promise as information carriers in ultradense memory and logic devices owing to the extremely low spin-polarized currents needed to move them.
Abstract: Magnetic skyrmions are nanoscale spin configurations that hold promise as information carriers in ultradense memory and logic devices owing to the extremely low spin-polarized currents needed to move them.

2,600 citations