scispace - formally typeset
Search or ask a question
Author

Eva Kachlishvili

Bio: Eva Kachlishvili is an academic researcher from University of Georgia. The author has contributed to research in topics: Laccase & Xylanase. The author has an hindex of 17, co-authored 36 publications receiving 1360 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The study pointed out that the nature of lignocellulosic material and the method of fungi cultivation are factors determining the expression of lignecellulolytic potential of fungi as well as the ratio of individual enzymes in enzyme complex.

267 citations

Journal ArticleDOI
TL;DR: This review integrates recent literature and the own data on the physiology of laccase and manganese peroxidase synthesis, focusing on the common characteristics and unique properties of individual fungi as well as on several approaches providing enhanced enzyme secretion.

181 citations

Journal ArticleDOI
TL;DR: The effect of additional nitrogen sources on lignocellulolytic enzyme production by four species of white-rot fungi in solid-state fermentation of wheat straw and beech tree leaves was strain- and substrate-dependent and revealed that 10 mM peptone concentration was optimal for cellulase and xylanase accumulation by P. dryinus IBB 903.
Abstract: The effect of additional nitrogen sources on lignocellulolytic enzyme production by four species of white-rot fungi (Funalia trogii IBB 146, Lentinus edodes IBB 363, Pleurotus dryinus IBB 903, and P. tuberregium IBB 624) in solid-state fermentation (SSF) of wheat straw and beech tree leaves was strain- and substrate-dependent. In general, the yields of hydrolytic enzymes and laccase increased by supplementation of medium with an additional nitrogen source. This stimulating effect of additional nitrogen on enzyme accumulation was due to higher biomass production. Only xylanase specific activity of P. dryinus IBB 903 and laccase specific activity of L. edodes IBB 363 increased significantly (by 66% and 73%, respectively) in SSF of wheat straw by addition of nitrogen source to the control medium. Additional nitrogen (20 mM) repressed manganese peroxidase (MnP) production by all fungi tested. The study of the nitrogen concentration effect revealed that 10 mM peptone concentration was optimal for cellulase and xylanase accumulation by P. dryinus IBB 903. While variation of the peptone concentration did not cause the change in MnP yield, elevated concentrations of this nutrient (20–40 mM) led to a 2–3-fold increase of P. dryinus IBB 903 laccase activity. About 10–20 mM concentration of NH4NO3 was optimal for cellulase and xylanase production by F. trogii IBB 146. However, neither the laccase nor the MnP yield was significantly changed by the additional nitrogen source.

163 citations

Journal ArticleDOI
TL;DR: The exploration of seven physiologically different white rot fungi potential to produce cellulase, xylanase, laccase, and manganese peroxidase (MnP) showed that the enzyme yield and their ratio in enzyme preparations significantly depends on the fungus species, lignocellulosic growth substrate, and cultivation method.
Abstract: The exploration of seven physiologically different white rot fungi potential to produce cellulase, xylanase, laccase, and manganese peroxidase (MnP) showed that the enzyme yield and their ratio in enzyme preparations significantly depends on the fungus species, lignocellulosic growth substrate, and cultivation method. The fruit residues were appropriate growth substrates for the production of hydrolytic enzymes and laccase. The highest endoglucanase (111 U ml(-1)) and xylanase (135 U ml(-1)) activities were revealed in submerged fermentation (SF) of banana peels by Pycnoporus coccineus. In the same cultivation conditions Cerrena maxima accumulated the highest level of laccase activity (7,620 U l(-1)). The lignified materials (wheat straw and tree leaves) appeared to be appropriate for the MnP secretion by majority basidiomycetes. With few exceptions, SF favored to hydrolases and laccase production by fungi tested whereas SSF was appropriate for the MnP accumulation. Thus, the Coriolopsis polyzona hydrolases activity increased more than threefold, while laccase yield increased 15-fold when tree leaves were undergone to SF instead SSF. The supplementation of nitrogen to the control medium seemed to have a negative effect on all enzyme production in SSF of wheat straw and tree leaves by Pleurotus ostreatus. In SF peptone and ammonium containing salts significantly increased C. polyzona and Trametes versicolor hydrolases and laccase yields. However, in most cases the supplementation of media with additional nitrogen lowered the fungi specific enzyme activities. Especially strong repression of T. versicolor MnP production was revealed.

152 citations

Journal ArticleDOI
TL;DR: The production of lignocellulolytic enzymes by eleven basidiomycetes species isolated from two ecosystems of Georgia was investigated for the first time under submerged (SF) and solid-state fermentation (SSF) of lignecellulosic by-products.
Abstract: The production of lignocellulolytic enzymes by eleven basidiomycetes species isolated from two ecosystems of Georgia was investigated for the first time under submerged (SF) and solid-state fermentation (SSF) of lignocellulosic by-products. Notable intergeneric and intrageneric differences were revealed with regard to the extent of hydrolase and oxidase activity. Several fungi produced laccase along with hydrolases in parallel with growth during the trophophase, showing that the synthesis of this enzyme is not connected with secondary metabolism. The lignocellulosic substrate type had the greatest impact on enzyme secretion. Some of the substrates significantly stimulated lignocellulolytic enzyme synthesis without supplementation of the culture medium with specific inducers. Exceptionally high carboxymethyl cellulase (CMCase, 122 U ml(-1)) and xylanase (195 U ml(-1)) activities were revealed in SF of mandarin peelings by Pseudotremella gibbosa IBB 22 and of residue after ethanol production (REP) by Fomes fomentarius IBB 38, respectively. The SSF of REP by T. pubescens IBB 11 ensured the highest level of laccase activity (24,690 U l(-1)), whereas the SSF of wheat bran and SF of mandarin peels provided the highest manganese peroxidase activity (570-620 U l(-1)) of Trichaptum biforme IBB 117. Moreover, the variation of lignocellulosic growth substrate provides an opportunity to obtain enzyme preparations containing different ratios of individual enzymes.

121 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In the last several years, in serious consideration of the worldwide economic and environmental pollution issues there has been increasing research interest in the value of bio-sourced lignocellu....

670 citations

Journal ArticleDOI
TL;DR: This review deals with developments in bioprocess technologies, solid-state and submerged fermentation as well as on the strategies adopted for improving cellulase production or properties, including engineering the genes or designing enzyme cocktails.

569 citations

Journal ArticleDOI
TL;DR: An overview of current knowledge on the ecological functions of microbial EPSs and their application in agricultural soils to improve soil particle aggregation, an important factor for soil structure, health, and fertility is provided.
Abstract: A wide range of microorganisms produce extracellular polymeric substances (EPS), highly hydrated polymers that are mainly composed of polysaccharides, proteins and DNA. EPS are fundamental for microbial life and provide an ideal environment for chemical reactions, nutrient entrapment and protection against environmental stresses such as salinity and drought. Microbial EPS can enhance the aggregation of soil particles and benefit plants by maintaining the moisture of the environment and trapping nutrients. In addition, EPS have unique characteristics, such as biocompatibility, gelling and thickening capabilities, with industrial applications. However, despite decades of research on the industrial potential of EPS, only a few polymers are widely used in different areas, especially in agriculture. This review provides an overview of current knowledge on the ecological functions of microbial extracellular polymeric substances (EPS) and their application in agricultural soils to improve soil particle aggregation, an important factor for soil structure, health and fertility.

476 citations

Journal ArticleDOI
TL;DR: A global overview of parameters affecting the biocatalysis of pollutants by laccases, particularly with regard to the economical production of these enzymes using synthetic media and waste materials, is timely.

416 citations

Journal ArticleDOI
TL;DR: An overview of the current state of fungal pretreatment by white rot fungi for biofuel production and the limitations and future perspective of this technology are provided.

414 citations