scispace - formally typeset
Search or ask a question
Author

Eva Rajo-Iglesias

Bio: Eva Rajo-Iglesias is an academic researcher from Carlos III Health Institute. The author has contributed to research in topics: Microstrip antenna & Antenna (radio). The author has an hindex of 37, co-authored 215 publications receiving 4770 citations. Previous affiliations of Eva Rajo-Iglesias include Universidad Politécnica de Cartagena & Chalmers University of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: The ridge gap waveguide as mentioned in this paper is a metamaterial-based waveguide that can be realized in a narrow gap between two parallel metal plates by using a texture or multilayer structure on one of the surfaces.
Abstract: This letter presents a new metamaterial-based waveguide technology referred to as ridge gap waveguides. The main advantages of the ridge gap waveguides compared to hollow waveguides are that they are planar and much cheaper to manufacture, in particular at high frequencies such as for millimeter and sub- millimeter waves. The latter is due to the fact that there are no mechanical joints across which electric currents must float. The gap waveguides have lower losses than microstrip lines, and they are completely shielded by metal so no additional packaging is needed, in contrast to the severe packaging problems associated with microstrip circuits. The gap waveguides are realized in a narrow gap between two parallel metal plates by using a texture or multilayer structure on one of the surfaces. The waves follow metal ridges in the textured surface. All wave propagation in other directions is prohibited (in cutoff) by realizing a high surface impedance (ideally a perfect magnetic conductor) in the textured surface at both sides of all ridges. Thereby, cavity resonances do not appear either within the band of operation. The present letter introduces the gap waveguide and presents some initial simulated results.

738 citations

Journal ArticleDOI
TL;DR: In this paper, the ridge gap waveguide is used to verify the large bandwidth and low losses of the quasi-transverse electromagnetic (TEM) mode propagating along the guiding ridge.
Abstract: This study describes the design and experimental verification of the ridge gap waveguide, appearing in the gap between parallel metal plates. One of the plates has a texture in the form of a wave-guiding metal ridge surrounded by metal posts. The latter posts, referred to as a pin surface or bed of nails, are designed to give a stopband for the normal parallel-plate modes between 10 and 23 GHz. The hardware demonstrator includes two 90 bends and two capacitive coupled coaxial transitions enabling measurements with a vector network analyser (VNA). The measured results verify the large bandwidth and low losses of the quasi-transverse electromagnetic (TEM) mode propagating along the guiding ridge, and that 90 bends can be designed in the same way as for microstrip lines. The demonstrator is designed for use around 15 GHz. Still, the ridge gap waveguide is more advantageous for frequencies above 30 GHz, because it can be realised entirely from metal using milling or moulding, and there are no requirements for conducting joints between the two plates that otherwise is a problem when realising conventional hollow waveguides.

377 citations

Journal ArticleDOI
TL;DR: In this paper, a planar electromagnetic band gap (EBG) structure based on a truncated frequency selective surface (FSS) grounded slab is proposed for patch antenna arrays, keeping both the element separation smaller than for grating lobes avoidance and the patch antenna size large enough to have a good antenna directivity.
Abstract: Periodic structures can help in the reduction of mutual coupling by using their capability of suppressing surface waves propagation in a given frequency range. The purpose of this work is to show the viability of using a planar electromagnetic band gap (EBG) structure based on a truncated frequency selective surface (FSS) grounded slab to this aim. The goal is to use it in patch antenna arrays, keeping both the element separation smaller than for grating lobes avoidance (assuming broadside case) and the patch antenna size large enough to have a good antenna directivity. To this aim, a multilayer dielectric substrate composed of high and low permittivity layers is convenient. This allows the use of a planar EBG structure made of small elements printed on the high permittivity material and, at the same time, the low permittivity layer helps the bandwidth and the directivity of the antenna to be increased. The EBG structure was designed under these premises and optimized for the particular application via an external optimization algorithm based on evolutionary computation: ant colony optimization (ACO). The mutual coupling reduction has been measured and it is larger than 10 dB with a completely planar structure.

302 citations

Journal ArticleDOI
TL;DR: In this paper, the bandwidth of gap waveguide is determined by the cut-off bandwidth of a parallel-plate waveguide where one surface has such a texture and no ridges or strips.
Abstract: Recently it has been shown that so-called gap waveguides can be generated in the gap between parallel metal plates The gap waveguides are formed by metal ridges or strips along which local waves propagate, and parallel plate modes are prohibited from propagating by providing one of the surfaces with a texture that generates an artificial magnetic conductor (AMC) or an electromagnetic bandgap (EBG) surface on both sides of the ridges or strips The bandwidth of the gap waveguide is determined by the cut-off bandwidth of a parallel-plate waveguide where one surface has such a texture (and no ridges or strips) This paper studies the bandwidths (or stop bands) of such parallel-plate cut-offs when the AMC or EBG is realised by a metal pin surface, corrugations or a mushroom surface It is shown that cut-off bandwidths of up to 4:1 are potentially available, and thereby similar bandwidths should be achievable also for gap waveguides

258 citations

Journal ArticleDOI
TL;DR: The ant colony optimization (ACO) is proposed as an useful alternative in the thinned array design, using the sidelobe level (SLL) as the desirability parameter.
Abstract: The synthesis of unequally spaced large arrays is computationally unapproachable without using an optimization technique. In complex structures, gradient implementations converge to local minima and cannot be used to obtain a desired solution. Thus, global search methods are necessary to get specific design characteristics. In this letter, we propose the ant colony optimization (ACO) as an useful alternative in the thinned array design, using the sidelobe level (SLL) as the desirability parameter. Some examples have been proposed and solved to demonstrate the functionality of this technique for both linear and planar arrays

253 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The ridge gap waveguide as mentioned in this paper is a metamaterial-based waveguide that can be realized in a narrow gap between two parallel metal plates by using a texture or multilayer structure on one of the surfaces.
Abstract: This letter presents a new metamaterial-based waveguide technology referred to as ridge gap waveguides. The main advantages of the ridge gap waveguides compared to hollow waveguides are that they are planar and much cheaper to manufacture, in particular at high frequencies such as for millimeter and sub- millimeter waves. The latter is due to the fact that there are no mechanical joints across which electric currents must float. The gap waveguides have lower losses than microstrip lines, and they are completely shielded by metal so no additional packaging is needed, in contrast to the severe packaging problems associated with microstrip circuits. The gap waveguides are realized in a narrow gap between two parallel metal plates by using a texture or multilayer structure on one of the surfaces. The waves follow metal ridges in the textured surface. All wave propagation in other directions is prohibited (in cutoff) by realizing a high surface impedance (ideally a perfect magnetic conductor) in the textured surface at both sides of all ridges. Thereby, cavity resonances do not appear either within the band of operation. The present letter introduces the gap waveguide and presents some initial simulated results.

738 citations

Book
24 Nov 2008
TL;DR: In this paper, the FDTD method for periodic structure analysis is used for periodic structures analysis of EBG surfaces and low profile wire antennas are used for EBG surface wave antennas.
Abstract: Preface 1. Introduction 2. FDTD Method for periodic structure analysis 3. EBG Characterizations and classifications 4. Design and optimizations of EBG structures 5. Patch antennas with EBG structures 6. Low profile wire antennas on EBG surfaces 7. Surface wave antennas Appendix: EBG literature review.

634 citations

Journal ArticleDOI
10 Feb 2011
TL;DR: An overview of the existing vehicular channel measurements in a variety of important environments, and the observed channel characteristics (such as delay spreads and Doppler spreads) therein, is provided.
Abstract: To make transportation safer, more efficient, and less harmful to the environment, traffic telematics services are currently being intensely investigated and developed. Such services require dependable wireless vehicle-to-infrastructure and vehicle-to-vehicle communications providing robust connectivity at moderate data rates. The development of such dependable vehicular communication systems and standards requires accurate models of the propagation channel in all relevant environments and scenarios. Key characteristics of vehicular channels are shadowing by other vehicles, high Doppler shifts, and inherent nonstationarity. All have major impact on the data packet transmission reliability and latency. This paper provides an overview of the existing vehicular channel measurements in a variety of important environments, and the observed channel characteristics (such as delay spreads and Doppler spreads) therein. We briefly discuss the available vehicular channel models and their respective merits and deficiencies. Finally, we discuss the implications for wireless system design with a strong focus on IEEE 802.11p. On the road towards a dependable vehicular network, room for improvements in coverage, reliability, scalability, and delay are highlighted, calling for evolutionary improvements in the IEEE 802.11p standard. Multiple antennas at the onboard units and roadside units are recommended to exploit spatial diversity for increased diversity and reliability. Evolutionary improvements in the physical (PHY) and medium access control (MAC) layers are required to yield dependable systems. Extensive references are provided.

454 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a wideband ultra wideband (UWB) communication protocol with a low EIRP level (−41.3dBm/MHz) for unlicensed operation between 3.1 and 10.6 GHz.
Abstract: Before the emergence of ultra-wideband (UWB) radios, widely used wireless communications were based on sinusoidal carriers, and impulse technologies were employed only in specific applications (e.g. radar). In 2002, the Federal Communication Commission (FCC) allowed unlicensed operation between 3.1–10.6 GHz for UWB communication, using a wideband signal format with a low EIRP level (−41.3dBm/MHz). UWB communication systems then emerged as an alternative to narrowband systems and significant effort in this area has been invested at the regulatory, commercial, and research levels.

452 citations

Journal ArticleDOI
TL;DR: Various technologies and issues regarding green IoT, which further reduces the energy consumption of IoT are discussed, and the latest developments and future vision about sensor cloud are reviewed and introduced.
Abstract: Smart world is envisioned as an era in which objects (e.g., watches, mobile phones, computers, cars, buses, and trains) can automatically and intelligently serve people in a collaborative manner. Paving the way for smart world, Internet of Things (IoT) connects everything in the smart world. Motivated by achieving a sustainable smart world, this paper discusses various technologies and issues regarding green IoT, which further reduces the energy consumption of IoT. Particularly, an overview regarding IoT and green IoT is performed first. Then, the hot green information and communications technologies (ICTs) (e.g., green radio-frequency identification, green wireless sensor network, green cloud computing, green machine to machine, and green data center) enabling green IoT are studied, and general green ICT principles are summarized. Furthermore, the latest developments and future vision about sensor cloud, which is a novel paradigm in green IoT, are reviewed and introduced, respectively. Finally, future research directions and open problems about green IoT are presented. Our work targets to be an enlightening and latest guidance for research with respect to green IoT and smart world.

393 citations