scispace - formally typeset
Search or ask a question
Author

Evangelia Tsiani

Bio: Evangelia Tsiani is an academic researcher from Brock University. The author has contributed to research in topics: Cancer & Cancer cell. The author has an hindex of 13, co-authored 15 publications receiving 872 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: GLUTs represent attractive targets for cancer therapy and this review summarizes recent studies in which GLUT1, GLUT3,GLUT5 and others are inhibited to decrease cancer growth.
Abstract: It is long recognized that cancer cells display increased glucose uptake and metabolism. In a rate-limiting step for glucose metabolism, the glucose transporter (GLUT) proteins facilitate glucose uptake across the plasma membrane. Fourteen members of the GLUT protein family have been identified in humans. This review describes the major characteristics of each member of the GLUT family and highlights evidence of abnormal expression in tumors and cancer cells. The regulation of GLUTs by key proliferation and pro-survival pathways including the phosphatidylinositol 3-kinase (PI3K)-Akt, hypoxia-inducible factor-1 (HIF-1), Ras, c-Myc and p53 pathways is discussed. The clinical utility of GLUT expression in cancer has been recognized and evidence regarding the use of GLUTs as prognostic or predictive biomarkers is presented. GLUTs represent attractive targets for cancer therapy and this review summarizes recent studies in which GLUT1, GLUT3, GLUT5 and others are inhibited to decrease cancer growth.

272 citations

Journal ArticleDOI
TL;DR: The results suggest that metformin can be a clinically useful adjunct to radiotherapy in NSCLC and mediate their action through an ATM–AMPK-dependent pathway.
Abstract: Metformin inhibits growth and enhances radiation response of non-small cell lung cancer (NSCLC) through ATM and AMPK

240 citations

Journal ArticleDOI
TL;DR: The present review summarizes the existing in vitro and in vivo studies focusing on the anticancer effects of rosemary extract and the rosemary Extract polyphenols carnosic acid and rosmarinic acid, and their effects on key signaling molecules.
Abstract: Cancer cells display enhanced growth rates and a resistance to apoptosis. The ability of cancer cells to evade homeostasis and proliferate uncontrollably while avoiding programmed cell death/apoptosis is acquired through mutations to key signaling molecules, which regulate pathways involved in cell proliferation and survival. Compounds of plant origin, including food components, have attracted scientific attention for use as agents for cancer prevention and treatment. The exploration into natural products offers great opportunity to evaluate new anticancer agents as well as understand novel and potentially relevant mechanisms of action. Rosemary extract has been reported to have antioxidant, anti-inflammatory, antidiabetic and anticancer properties. Rosemary extract contains many polyphenols with carnosic acid and rosmarinic acid found in highest concentrations. The present review summarizes the existing in vitro and in vivo studies focusing on the anticancer effects of rosemary extract and the rosemary extract polyphenols carnosic acid and rosmarinic acid, and their effects on key signaling molecules.

188 citations

Journal ArticleDOI
TL;DR: This article summarizes the existing in vitro and in vivo studies focusing on the anticancer effects of oleuropein and its effects on key signaling molecules.
Abstract: Cancer cells exhibit enhanced proliferation rate and a resistance to apoptosis. Epidemiological studies suggest that olive oil intake is associated with a reduced risk of cancer. Olive oil, olives, and olive leaves contain many polyphenols, including oleuropein. Recently, several studies have demonstrated that oleuropein inhibits proliferation and induces apoptosis in different cancer cell lines. In addition, anticancer effects of oleuropein have been seen in animal studies. These effects are associated with oleuropein's ability to modulate gene expression and activity of a variety of different signaling proteins that play a role in proliferation and apoptosis. This article summarizes the existing in vitro and in vivo studies focusing on the anticancer effects of oleuropein and its effects on key signaling molecules. © 2017 BioFactors, 43(4):517-528, 2017.

66 citations

Journal ArticleDOI
TL;DR: It is suggested that HIE stimulates a response in bone turnover markers and cytokines and that a correlation exists between immune and skeletal responses to this form of exercise.
Abstract: IntroductionLow-impact, high-intensity interval exercise (HIE) was used to investigate the postexercise response in bone turnover markers and cytokines.MethodsTwenty-three recreationally active males (21.8 ± 2.4 yr) performed one HIE bout on a cycle ergometer at 90% maximum workload. The tot

64 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Accumulating evidence now suggests that mitochondrial bioenergetics, biosynthesis and signaling are required for tumorigenesis, and emerging studies have begun to demonstrate that mitochondrial metabolism is potentially a fruitful arena for cancer therapy.
Abstract: Mitochondria have a well-recognized role in the production of ATP and the intermediates needed for macromolecule biosynthesis, such as nucleotides. Mitochondria also participate in the activation of signaling pathways. Overall, accumulating evidence now suggests that mitochondrial bioenergetics, biosynthesis and signaling are required for tumorigenesis. Thus, emerging studies have begun to demonstrate that mitochondrial metabolism is potentially a fruitful arena for cancer therapy. In this Perspective, we highlight recent developments in targeting mitochondrial metabolism for the treatment of cancer.

1,070 citations

Journal ArticleDOI
TL;DR: How the mitochondria has a key role in regulating the interplay between redox homeostasis and metabolism within tumor cells is described, and the potential therapeutic use of agents that directly or indirectly block metabolism is discussed.
Abstract: Tumor cells harbor genetic alterations that promote a continuous and elevated production of reactive oxygen species. Whereas such oxidative stress conditions would be harmful to normal cells, they facilitate tumor growth in multiple ways by causing DNA damage and genomic instability, and ultimately, by reprogramming cancer cell metabolism. This review outlines the metabolic-dependent mechanisms that tumors engage in when faced with oxidative stress conditions that are critical for cancer progression by producing redox cofactors. In particular, we describe how the mitochondria has a key role in regulating the interplay between redox homeostasis and metabolism within tumor cells. Last, we will discuss the potential therapeutic use of agents that directly or indirectly block metabolism.

822 citations

Journal ArticleDOI
TL;DR: The canonical ligand‐induced EGFR signaling pathway is reviewed, with particular emphasis to its regulation by endocytosis and subversion in human tumors, and the most recent advances in uncovering noncanonical EGFR functions in stress‐induced trafficking, autophagy, and energy metabolism are focused on.

775 citations

01 Mar 2014
TL;DR: A continuous-flow culture apparatus for maintaining proliferating cells in low-nutrient media for long periods of time is developed and used to undertake competitive proliferation assays, concluding that mtDNA mutations and impaired glucose utilization are potential biomarkers for identifying tumours with increased sensitivity to OXPHOS inhibitors.
Abstract: As the concentrations of highly consumed nutrients, particularly glucose, are generally lower in tumours than in normal tissues, cancer cells must adapt their metabolism to the tumour microenvironment. A better understanding of these adaptations might reveal cancer cell liabilities that can be exploited for therapeutic benefit. Here we developed a continuous-flow culture apparatus (Nutrostat) for maintaining proliferating cells in low-nutrient media for long periods of time, and used it to undertake competitive proliferation assays on a pooled collection of barcoded cancer cell lines cultured in low-glucose conditions. Sensitivity to low glucose varies amongst cell lines, and an RNA interference (RNAi) screen pinpointed mitochondrial oxidative phosphorylation (OXPHOS) as the major pathway required for optimal proliferation in low glucose. We found that cell lines most sensitive to low glucose are defective in the OXPHOS upregulation that is normally caused by glucose limitation as a result of either mitochondrial DNA (mtDNA) mutations in complex I genes or impaired glucose utilization. These defects predict sensitivity to biguanides, antidiabetic drugs that inhibit OXPHOS, when cancer cells are grown in low glucose or as tumour xenografts. Notably, the biguanide sensitivity of cancer cells with mtDNA mutations was reversed by ectopic expression of yeast NDI1, a ubiquinone oxidoreductase that allows bypass of complex I function. Thus, we conclude that mtDNA mutations and impaired glucose utilization are potential biomarkers for identifying tumours with increased sensitivity to OXPHOS inhibitors.

493 citations

01 Jan 2004
TL;DR: It is demonstrated that PKC-θ is a crucial component mediating fat-induced insulin resistance in skeletal muscle and suggested that PKc-η is a potential therapeutic target for the treatment of type 2 diabetes.
Abstract: Insulin resistance plays a primary role in the development of type 2 diabetes and may be related to alterations in fat metabolism. Recent studies have suggested that local accumulation of fat metabolites inside skeletal muscle may activate a serine kinase cascade involving protein kinase C–θ (PKC-θ), leading to defects in insulin signaling and glucose transport in skeletal muscle. To test this hypothesis, we examined whether mice with inactivation of PKC-θ are protected from fat-induced insulin resistance in skeletal muscle. Skeletal muscle and hepatic insulin action as assessed during hyperinsulinemic-euglycemic clamps did not differ between WT and PKC-θ KO mice following saline infusion. A 5-hour lipid infusion decreased insulin-stimulated skeletal muscle glucose uptake in the WT mice that was associated with 40–50% decreases in insulin-stimulated tyrosine phosphorylation of insulin receptor substrate–1 (IRS-1) and IRS-1–associated PI3K activity. In contrast, PKC-θ inactivation prevented fat-induced defects in insulin signaling and glucose transport in skeletal muscle. In conclusion, our findings demonstrate that PKC-θ is a crucial component mediating fat-induced insulin resistance in skeletal muscle and suggest that PKC-θ is a potential therapeutic target for the treatment of type 2 diabetes.

423 citations