scispace - formally typeset
Search or ask a question
Author

Evangelos E. Milios

Other affiliations: University of Toronto, Keele University, York University  ...read more
Bio: Evangelos E. Milios is an academic researcher from Dalhousie University. The author has contributed to research in topics: Cluster analysis & Mobile robot. The author has an hindex of 45, co-authored 301 publications receiving 9988 citations. Previous affiliations of Evangelos E. Milios include University of Toronto & Keele University.


Papers
More filters
Journal ArticleDOI
TL;DR: The problem of consistent registration of multiple frames of measurements (range scans), together with therelated issues of representation and manipulation of spatialuncertainties are studied, to maintain all the local frames of data as well as the relative spatial relationships between localframes.
Abstract: A robot exploring an unknown environment may need to build a world model from sensor measurements. In order to integrate all the frames of sensor data, it is essential to align the data properly. An incremental approach has been typically used in the past, in which each local frame of data is aligned to a cumulative global model, and then merged to the model. Because different parts of the model are updated independently while there are errors in the registration, such an approach may result in an inconsistent model. In this paper, we study the problem of consistent registration of multiple frames of measurements (range scans), together with the related issues of representation and manipulation of spatial uncertainties. Our approach is to maintain all the local frames of data as well as the relative spatial relationships between local frames. These spatial relationships are modeled as random variables and are derived from matching pairwise scans or from odometry. Then we formulate a procedure based on the maximum likelihood criterion to optimally combine all the spatial relations. Consistency is achieved by using all the spatial relations as constraints to solve for the data frame poses simultaneously. Experiments with both simulated and real data will be presented.

1,452 citations

Journal ArticleDOI
TL;DR: Two new iterative algorithms to register a range scan to a previous scan so as to compute relative robot positions in an unknown environment, that avoid the above problems.
Abstract: A mobile robot exploring an unknown environment has no absolute frame of reference for its position, other than features it detects through its sensors. Using distinguishable landmarks is one possible approach, but it requires solving the object recognition problem. In particular, when the robot uses two-dimensional laser range scans for localization, it is difficult to accurately detect and localize landmarks in the environment (such as corners and occlusions) from the range scans. In this paper, we develop two new iterative algorithms to register a range scan to a previous scan so as to compute relative robot positions in an unknown environment, that avoid the above problems. The first algorithm is based on matching data points with tangent directions in two scans and minimizing a distance function in order to solve the displacement between the scans. The second algorithm establishes correspondences between points in the two scans and then solves the point-to-point least-squares problem to compute the relative pose of the two scans. Our methods work in curved environments and can handle partial occlusions by rejecting outliers.

669 citations

Journal ArticleDOI
TL;DR: A taxonomy that classifies multi-agent systems according to communication, computational and other capabilities is presented, and it is demonstrated that a collective can be demonstrably more powerful than a single unit of the collective.
Abstract: A key difficulty in the design of multi-agent robotic systems is the size and complexity of the space of possible designs. In order to make principled design decisions, an understanding of the many possible system configurations is essential. To this end, we present a taxonomy that classifies multi-agent systems according to communication, computational and other capabilities. We survey existing efforts involving multi-agent systems according to their positions in the taxonomy. We also present additional results concerning multi-agent systems, with the dual purposes of illustrating the usefulness of the taxonomy in simplifying discourse about robot collective properties, and also demonstrating that a collective can be demonstrably more powerful than a single unit of the collective.

408 citations

Proceedings ArticleDOI
04 Nov 2005
TL;DR: A novel information retrieval method is proposed that is capable of detecting similarities between documents containing semantically similar but not necessarily lexicographically similar terms.
Abstract: Semantic Similarity relates to computing the similarity between concepts which are not lexicographically similar. We investigate approaches to computing semantic similarity by mapping terms (concepts) to an ontology and by examining their relationships in that ontology. Some of the most popular semantic similarity methods are implemented and evaluated using WordNet as the underlying reference ontology. Building upon the idea of semantic similarity, a novel information retrieval method is also proposed. This method is capable of detecting similarities between documents containing semantically similar but not necessarily lexicographically similar terms. The proposed method has been evaluated in retrieval of images and documents on the Web. The experimental results demonstrated very promising performance improvements over state-of-the-art information retrieval methods.

368 citations

Journal ArticleDOI
01 Dec 1991
TL;DR: It is demonstrated that the problem of robotic exploration of a graphlike world, where no distance or orientation metric is assumed of the world, is unsolvable in general without markers, and an exploration algorithm is developed and proven correct.
Abstract: Addressed is the problem of robotic exploration of a graphlike world, where no distance or orientation metric is assumed of the world. The robot is assumed to be able to autonomously traverse graph edges, recognize when it has reached a vertex, and enumerate edges incident upon the current vertex relative to the edge via which it entered the current vertex. The robot cannot measure distances, and it does not have a compass. It is demonstrated that this exploration problem is unsolvable in general without markers, and, to solve it, the robot is equipped with one or more distinct markers that can be put down or picked up at will and that can be recognized by the robot if they are at the same vertex as the robot. An exploration algorithm is developed and proven correct. Its performance is shown on several example worlds, and heuristics for improving its performance are discussed. >

306 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations