scispace - formally typeset
Search or ask a question
Author

Evelyn L. Hu

Bio: Evelyn L. Hu is an academic researcher from Harvard University. The author has contributed to research in topics: Diamond & Quantum dot. The author has an hindex of 16, co-authored 26 publications receiving 2310 citations.

Papers
More filters
Journal ArticleDOI
08 Mar 2013-Science
TL;DR: The past decade has seen remarkable progress in isolating and controlling quantum coherence using charges and spins in semiconductors, and electron spin coherence times now exceed several seconds, a nine-fold increase in coherence compared with the first semiconductor qubits.
Abstract: The past decade has seen remarkable progress in isolating and controlling quantum coherence using charges and spins in semiconductors. Quantum control has been established at room temperature, and electron spin coherence times now exceed several seconds, a nine–order-of-magnitude increase in coherence compared with the first semiconductor qubits. These coherence times rival those traditionally found only in atomic systems, ushering in a new era of ultracoherent spintronics. We review recent advances in quantum measurements, coherent control, and the generation of entangled states and describe some of the challenges that remain for processing quantum information with spins in semiconductors.

691 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate that the presence of a single photon on one of the fundamental polariton transitions can turn on light scattering on a transition from the first to the second Jaynes-Cummings manifold.
Abstract: An as yet outstanding goal in quantum optics is the realization of fast optical nonlinearities at the single-photon level This would allow for the implementation of optical devices with new functionalities such as single-photon switches/transistors1,2 or controlled-phase gates3 Although nonlinear optics effects at the single-emitter level have been demonstrated in a number of systems4,5,6,7,8,9,10,11,12,13, none of these experiments showed single-photon switching on ultrafast timescales Here, we perform pulsed two-colour spectroscopy and demonstrate that, in a strongly coupled quantum dot–cavity system, the presence of a single photon on one of the fundamental polariton transitions can turn on light scattering on a transition from the first to the second Jaynes–Cummings manifold The overall switching time of this single-photon all-optical switch14 is ∼50 ps In addition, we use the single-photon nonlinearity to implement a pulse correlator Our quantum dot–cavity system could form the building block of future high-bandwidth photonic networks operating in the quantum regime15,16,17,18 Researchers report the first demonstration of an ultrafast all-optical switch in the single-photon regime The device, which consists of an InAs/GaAs quantum dot in a photonic crystal defect cavity, exhibits a coherent coupling constant of 141 meV and a quality factor of 25,000 The overall switching time is around 50 ps

381 citations

Journal ArticleDOI
TL;DR: In this article, spontaneous emission enhancements approaching 1,000 for emitters coupled to the gap between a metal wire and a metal substrate were shown to yield a high internal quantum efficiency, despite the close proximity of lossy metal surfaces.
Abstract: Researchers demonstrate spontaneous emission enhancements approaching 1,000 for emitters coupled to the gap between a metal wire and a metal substrate. The enhanced emission rate of plasmons in the structures is shown to yield a high internal quantum efficiency, despite the close proximity of lossy metal surfaces.

376 citations

Journal ArticleDOI
TL;DR: In this paper, the authors observed a continuous change in photon correlations from strong antibunching to bunching by tuning either the probe laser or the cavity mode frequency, which is explained by the photon blockade and tunnelling in the anharmonic Jaynes-Cummings model.
Abstract: Researchers observe a continuous change in photon correlations from strong antibunching to bunching by tuning either the probe laser or the cavity mode frequency. These results, which demonstrate unprecedented strong single-photon nonlinearities in quantum dot cavity system, are explained by the photon blockade and tunnelling in the anharmonic Jaynes–Cummings model.

324 citations

Journal ArticleDOI
TL;DR: In this article, the effect of fluorine-terminated diamond surface on the charged state of shallow nitrogen vacancy defect centers (NVs) was investigated with CF4 plasma, and the surface chemistry was confirmed with x-ray photoemission spectroscopy.
Abstract: We investigated the effect of fluorine-terminated diamond surface on the charged state of shallow nitrogen vacancy defect centers (NVs). Fluorination is achieved with CF4 plasma, and the surface chemistry is confirmed with x-ray photoemission spectroscopy. Photoluminescence of these ensemble NVs reveals that fluorine-treated surfaces lead to a higher and more stable negatively charged nitrogen vacancy (NV−) population than oxygen-terminated surfaces. NV− population is estimated by the ratio of negative to neutral charged NV zero-phonon lines. Surface chemistry control of NV− density is an important step towards improving the optical and spin properties of NVs for quantum information processing and magnetic sensing.

101 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Topological photonics is a rapidly emerging field of research in which geometrical and topological ideas are exploited to design and control the behavior of light as mentioned in this paper, which holds great promise for applications.
Abstract: Topological photonics is a rapidly emerging field of research in which geometrical and topological ideas are exploited to design and control the behavior of light. Drawing inspiration from the discovery of the quantum Hall effects and topological insulators in condensed matter, recent advances have shown how to engineer analogous effects also for photons, leading to remarkable phenomena such as the robust unidirectional propagation of light, which hold great promise for applications. Thanks to the flexibility and diversity of photonics systems, this field is also opening up new opportunities to realize exotic topological models and to probe and exploit topological effects in new ways. This article reviews experimental and theoretical developments in topological photonics across a wide range of experimental platforms, including photonic crystals, waveguides, metamaterials, cavities, optomechanics, silicon photonics, and circuit QED. A discussion of how changing the dimensionality and symmetries of photonics systems has allowed for the realization of different topological phases is offered, and progress in understanding the interplay of topology with non-Hermitian effects, such as dissipation, is reviewed. As an exciting perspective, topological photonics can be combined with optical nonlinearities, leading toward new collective phenomena and novel strongly correlated states of light, such as an analog of the fractional quantum Hall effect.

3,052 citations

Journal ArticleDOI
29 Nov 2017-Nature
TL;DR: This work demonstrates a method for creating controlled many-body quantum matter that combines deterministically prepared, reconfigurable arrays of individually trapped cold atoms with strong, coherent interactions enabled by excitation to Rydberg states, and realizes a programmable Ising-type quantum spin model with tunable interactions and system sizes of up to 51 qubits.
Abstract: Controllable, coherent many-body systems can provide insights into the fundamental properties of quantum matter, enable the realization of new quantum phases and could ultimately lead to computational systems that outperform existing computers based on classical approaches. Here we demonstrate a method for creating controlled many-body quantum matter that combines deterministically prepared, reconfigurable arrays of individually trapped cold atoms with strong, coherent interactions enabled by excitation to Rydberg states. We realize a programmable Ising-type quantum spin model with tunable interactions and system sizes of up to 51 qubits. Within this model, we observe phase transitions into spatially ordered states that break various discrete symmetries, verify the high-fidelity preparation of these states and investigate the dynamics across the phase transition in large arrays of atoms. In particular, we observe robust many-body dynamics corresponding to persistent oscillations of the order after a rapid quantum quench that results from a sudden transition across the phase boundary. Our method provides a way of exploring many-body phenomena on a programmable quantum simulator and could enable realizations of new quantum algorithms.

2,026 citations

Journal ArticleDOI
08 Mar 2013-Science
TL;DR: For the first time, physicists will have to master quantum error correction to design and operate complex active systems that are dissipative in nature, yet remain coherent indefinitely.
Abstract: The performance of superconducting qubits has improved by several orders of magnitude in the past decade. These circuits benefit from the robustness of superconductivity and the Josephson effect, and at present they have not encountered any hard physical limits. However, building an error-corrected information processor with many such qubits will require solving specific architecture problems that constitute a new field of research. For the first time, physicists will have to master quantum error correction to design and operate complex active systems that are dissipative in nature, yet remain coherent indefinitely. We offer a view on some directions for the field and speculate on its future.

2,013 citations

Journal ArticleDOI
TL;DR: In this paper, a review of recent theoretical and experimental advances in the fundamental understanding and active control of quantum fluids of light in nonlinear optical systems is presented, from the superfluid flow around a defect at low speeds to the appearance of a Mach-Cherenkov cone in a supersonic flow, to the hydrodynamic formation of topological excitations such as quantized vortices and dark solitons at the surface of large impenetrable obstacles.
Abstract: This article reviews recent theoretical and experimental advances in the fundamental understanding and active control of quantum fluids of light in nonlinear optical systems. In the presence of effective photon-photon interactions induced by the optical nonlinearity of the medium, a many-photon system can behave collectively as a quantum fluid with a number of novel features stemming from its intrinsically nonequilibrium nature. A rich variety of recently observed photon hydrodynamical effects is presented, from the superfluid flow around a defect at low speeds, to the appearance of a Mach-Cherenkov cone in a supersonic flow, to the hydrodynamic formation of topological excitations such as quantized vortices and dark solitons at the surface of large impenetrable obstacles. While the review is mostly focused on a specific class of semiconductor systems that have been extensively studied in recent years (planar semiconductor microcavities in the strong light-matter coupling regime having cavity polaritons as elementary excitations), the very concept of quantum fluids of light applies to a broad spectrum of systems, ranging from bulk nonlinear crystals, to atomic clouds embedded in optical fibers and cavities, to photonic crystal cavities, to superconducting quantum circuits based on Josephson junctions. The conclusive part of the article is devoted to a review of the future perspectives in the direction of strongly correlated photon gases and of artificial gauge fields for photons. In particular, several mechanisms to obtain efficient photon blockade are presented, together with their application to the generation of novel quantum phases.

1,469 citations

Journal ArticleDOI
TL;DR: An overview of the theoretical principles involved, as well as applications ranging from high-precision quantum electrodynamics experiments to quantum-information processing can be found in this paper.
Abstract: Quantum dots embedded in photonics nanostructures provide unprecedented control over the interaction between light and matter. This review gives an overview of the theoretical principles involved, as well as applications ranging from high-precision quantum electrodynamics experiments to quantum-information processing.

1,240 citations