scispace - formally typeset
Search or ask a question
Author

Evelyne Richard

Bio: Evelyne Richard is an academic researcher from University of Toulouse. The author has contributed to research in topics: Mesoscale meteorology & Precipitation. The author has an hindex of 29, co-authored 79 publications receiving 3952 citations. Previous affiliations of Evelyne Richard include Paul Sabatier University & Centre national de la recherche scientifique.


Papers
More filters
Journal ArticleDOI
TL;DR: The Meso-NH Atmospheric Simulation Engine as mentioned in this paper is a tool for small and meso-scale atmospheric processes, which is based on the Lipps and Hemler form of the anelastic system.
Abstract: The Meso-NH Atmospheric Simulation Sys- tem is a joint eAort of the Centre National de Recher- ches Meteorologiques and Laboratoire d'Aerologie. It comprises several elements; a numerical model able to simulate the atmospheric motions, ranging from the large meso-alpha scale down to the micro-scale, with a comprehensive physical package, a flexible file manager, an ensemble of facilities to prepare initial states, either idealized or interpolated from meteorological analyses or forecasts, a flexible post-processing and graphical facility to visualize the results, and an ensemble of interactive procedures to control these functions. Some of the distinctive features of this ensemble are the following: the model is currently based on the Lipps and Hemler form of the anelastic system, but may evolve towards a more accurate form of the equations system. In the future, it will allow for simultaneous simulation of several scales of motion, by the so-called ''interactive grid-nesting technique''. It allows for the in-line com- putation and accumulation of various terms of the budget of several quantities. It allows for the transport and diAusion of passive scalars, to be coupled with a chemical module. It uses the relatively new Fortran 90 compiler. It is tailored to be easily implemented on any UNIX machine. Meso-NH is designed as a research tool for small and meso-scale atmospheric processes. It is freely accessible to the research community, and we have tried to make it as ''user-friendly'' as possible, and as general as possible, although these two goals sometimes appear contradictory. The present paper presents a general description of the adiabatic formulation and some of the basic validation simulations. A list of the currently available physical parametrizations and ini- tialization methods is also given. A more precise description of these aspects will be provided in a further paper.

893 citations

Journal ArticleDOI
TL;DR: In this article, a bulk mass-flux convection parametrization for deep and shallow convection is presented that includes an efficient and straightforward treatment of numerics, moist thermodynamics and convective downdraughts.
Abstract: A bulk mass-flux convection parametrization for deep and shallow convection is presented that includes an efficient and straightforward treatment of numerics, moist thermodynamics and convective downdraughts. The scheme is evaluated in a single-column model context for a tropical deep-convective period and a trade-wind cumulus case. Preliminary applications in a global numerical weather-prediction model and a mesoscale model are also discussed. The results suggest that the present scheme provides reasonable solutions in terms of predicted rainfall, and tropical temperature and moisture structures. The application of the scheme to various scales is supported by the use of a convective available potential energy convective closure that assures a smooth interaction with the large-scale environment and efficiently suppresses conditional instability of the second kind-like spin-up processes on the grid-scale. Finally, the theoretical and practical limits of the present approach are discussed together with possible future developments.

564 citations

Journal ArticleDOI
TL;DR: The Hydrological Cycle in Mediterranean Experiment (HyMeX) as mentioned in this paper is a 10-yr concerted experimental effort at the international level that aims to advance the scientific knowledge of the water cycle variability in all compartments (land, sea, and atmosphere) and at various time and spatial scales.
Abstract: The Mediterranean countries are experiencing important challenges related to the water cycle, including water shortages and floods, extreme winds, and ice/snow storms, that impact critically the socioeconomic vitality in the area (causing damage to property, threatening lives, affecting the energy and transportation sectors, etc.). There are gaps in our understanding of the Mediterranean water cycle and its dynamics that include the variability of the Mediterranean Sea water budget and its feedback on the variability of the continental precipitation through air–sea interactions, the impact of precipitation variability on aquifer recharge, river discharge, and soil water content and vegetation characteristics specific to the Mediterranean basin and the mechanisms that control the location and intensity of heavy precipitating systems that often produce floods. The Hydrological Cycle in Mediterranean Experiment (HyMeX) program is a 10-yr concerted experimental effort at the international level that aims to advance the scientific knowledge of the water cycle variability in all compartments (land, sea, and atmosphere) and at various time and spatial scales. It also aims to improve the processes-based models needed for forecasting hydrometeorological extremes and the models of the regional climate system for predicting regional climate variability and evolution. Finally, it aims to assess the social and economic vulnerability to hydrometeorological natural hazards in the Mediterranean and the adaptation capacity of the territories and populations therein to provide support to policy makers to cope with water-related problems under the influence of climate change, by linking scientific outcomes with related policy requirements.

315 citations

Journal ArticleDOI
TL;DR: The COPS field phase was performed from 1 June to 31 August 2007 in a low-mountain area in southwestern Germany/eastern France covering the Vosges mountains, the Rhine valley and the Black Forest mountains.
Abstract: Within the framework of the international field campaign COPS (Convective and Orographically induced Precipitation Study), a large suite of state-of-the-art meteorological instrumentation was operated, partially combined for the first time. This includes networks of in situ and remote-sensing systems such as the Global Positioning System as well as a synergy of multi-wavelength passive and active remote-sensing instruments such as advanced radar and lidar systems. The COPS field phase was performed from 01 June to 31 August 2007 in a low-mountain area in southwestern Germany/eastern France covering the Vosges mountains, the Rhine valley and the Black Forest mountains. The collected dataset covers the entire evolution of convective precipitation events in complex terrain from their initiation, to their development and mature phase until their decay. Eighteen Intensive Observations Periods with 37 operation days and eight additional Special Observations Periods were performed, providing a comprehensive dataset covering different forcing conditions. In this article, an overview of the COPS scientific strategy, the field phase, and its first accomplishments is given. Highlights of the campaign are illustrated with several measurement examples. It is demonstrated that COPS research provides new insight into key processes leading to convection initiation and to the modification of precipitation by orography, in the improvement of quantitative precipitation forecasting by the assimilation of new observations, and in the performance of ensembles of convection-permitting models in complex terrain.

215 citations

Journal ArticleDOI
TL;DR: The Meso-NH model as discussed by the authors is an atmospheric non hydrostatic research model that is applied to a broad range of resolutions, from synoptic to turbulent scales, and is designed for studies of physics and chemistry.
Abstract: . This paper presents the Meso-NH model version 5.4. Meso-NH is an atmospheric non hydrostatic research model that is applied to a broad range of resolutions, from synoptic to turbulent scales, and is designed for studies of physics and chemistry. It is a limited-area model employing advanced numerical techniques, including monotonic advection schemes for scalar transport and fourth-order centered or odd-order WENO advection schemes for momentum. The model includes state-of-the-art physics parameterization schemes that are important to represent convective-scale phenomena and turbulent eddies, as well as flows at larger scales. In addition, Meso-NH has been expanded to provide capabilities for a range of Earth system prediction applications such as chemistry and aerosols, electricity and lightning, hydrology, wildland fires, volcanic eruptions, and cyclones with ocean coupling. Here, we present the main innovations to the dynamics and physics of the code since the pioneer paper of Lafore et al. (1998) and provide an overview of recent applications and couplings.

210 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Modifications to the Kain‐Fritsch convective parameterization evolved from an effort to produce desired effects in numerical weather prediction while also rendering the scheme more faithful to observations and cloud-resolving modeling studies.
Abstract: Numerous modifications to the Kain‐Fritsch convective parameterization have been implemented over the last decade. These modifications are described, and the motivating factors for the changes are discussed. Most changes were inspired by feedback from users of the scheme (primarily numerical modelers) and interpreters of the model output (mainly operational forecasters). The specific formulation of the modifications evolved from an effort to produce desired effects in numerical weather prediction while also rendering the scheme more faithful to observations and cloud-resolving modeling studies.

4,056 citations

01 Jan 1989
TL;DR: In this article, a two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea.
Abstract: Abstract A two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea. The domain includes a representation of part of Borneo as well as the sea so that the model can simulate the initiation of convection. Also included in the model are parameterizations of mesoscale ice phase and moisture processes and longwave and shortwave radiation with a diurnal cycle. This allows use of the model to test the relative importance of various heating mechanisms to the stratiform cloud deck, which typically occupies several hundred kilometers of the domain. Frank and Cohen's cumulus parameterization scheme is employed to represent vital unresolved vertical transports in the convective area. The major conclusions are: Ice phase processes are important in determining the level of maximum large-scale heating and vertical motion because there is a strong anvil componen...

3,813 citations

Journal ArticleDOI
TL;DR: An integrated forecasting and data assimilation system has been and is continuing to be developed by the Meteorological Research Branch (MRB) in partnership with the Canadian Meteorological Centre (CMC) of Environment Canada.
Abstract: An integrated forecasting and data assimilation system has been and is continuing to be developed by the Meteorological Research Branch (MRB) in partnership with the Canadian Meteorological Centre (CMC) of Environment Canada. Part I of this two-part paper motivates the development of the new system, summarizes various considerations taken into its design, and describes its main characteristics.

1,011 citations

Journal ArticleDOI
TL;DR: In this article, a computational scheme suitable for numerical weather prediction and climate modelling over a wide range of length scales is described, which is non-hydrostatic and fully compressible, and shallow atmosphere approximations are not made.
Abstract: A computational scheme suitable for numerical weather prediction and climate modelling over a wide range of length scales is described. Its formulation is non-hydrostatic and fully compressible, and shallow atmosphere approximations are not made. Semi-implicit, semi-Lagrangian time-integration methods are used. The scheme forms the dynamical core of the unified model used at the Met Office for all its operational numerical weather prediction and in its climate studies. © Crown copyright, 2005. Royal Meteorological Society

1,000 citations

Journal ArticleDOI
TL;DR: The Advanced Regional Prediction System (ARPS) as mentioned in this paper is a non-hydrostatic model developed at the Center for Analysis and Prediction of Storms (CAPS) at the University of Oklahoma.
Abstract: A completely new nonhydrostatic model system known as the Advanced Regional Prediction System (ARPS) has been developed in recent years at the Center for Analysis and Prediction of Storms (CAPS) at the University of Oklahoma. The ARPS is designed from the beginning to serve as an effective tool for basic and applied research and as a system suitable for explicit prediction of convective storms as well as weather systems at other scales. The ARPS includes its own data ingest, quality control and objective analysis packages, a data assimilation system which includes single-Doppler velocity and thermodynamic retrieval algorithms, the forward prediction component, and a self-contained post-processing, diagnostic and verification package. The forward prediction component of the ARPS is a three-dimensional, nonhydrostatic compressible model formulated in generalized terrain-following coordinates. Minimum approximations are made to the original governing equations. The split-explicit scheme is used to integrate the sound-wave containing equations, which allows the horizontal domain-decomposition strategy to be efficiently implemented for distributed-memory massively parallel computers. The model performs equally well on conventional shared-memory scalar and vector processors. The model employs advanced numerical techniques, including monotonic advection schemes for scalar transport and variance-conserving fourth-order advection for other variables. The model also includes state-of-the-art physics parameterization schemes that are important for explicit prediction of convective storms as well as the prediction of flows at larger scales. Unique to this system are the consistent code styling maintained for the entire model system and thorough internal documentation. Modern software engineering practices are employed to ensure that the system is modular, extensible and easy to use. The system has been undergoing real-time prediction tests at the synoptic through storm scales in the past several years over the continental United States as well as in part of Asia, some of which included retrieved Doppler radar data and hydrometeor types in the initial condition. As the first of a two-part paper series, we describe herein the dynamic and numerical framework of the model, together with the subgrid-scale turbulence and the PBL parameterization. The model dynamic and numerical framework is then verified using idealized and realistic mountain flow cases and an idealized density current. Other physics parameterization schemes will be described in Part II, which is followed by verification against observational data of the coupled soil-vegetation model, surface layer fluxes and the PBL parameterization. Applications of the model to the simulation of an observed supercell storm and to the prediction of a real case are also found in Part II. In the latter case, a long-lasting squall line developed and propagated across the eastern part of the United States following a historical number of tornado outbreak in the state of Arkansas.

993 citations