scispace - formally typeset
Search or ask a question
Author

Evgeniya Ustinova

Bio: Evgeniya Ustinova is an academic researcher from Skolkovo Institute of Science and Technology. The author has contributed to research in topics: Artificial neural network & Deep learning. The author has an hindex of 8, co-authored 11 publications receiving 5677 citations.

Papers
More filters
Book ChapterDOI
TL;DR: In this article, a new representation learning approach for domain adaptation is proposed, in which data at training and test time come from similar but different distributions, and features that cannot discriminate between the training (source) and test (target) domains are used to promote the emergence of features that are discriminative for the main learning task on the source domain.
Abstract: We introduce a new representation learning approach for domain adaptation, in which data at training and test time come from similar but different distributions. Our approach is directly inspired by the theory on domain adaptation suggesting that, for effective domain transfer to be achieved, predictions must be made based on features that cannot discriminate between the training (source) and test (target) domains. The approach implements this idea in the context of neural network architectures that are trained on labeled data from the source domain and unlabeled data from the target domain (no labeled target-domain data is necessary). As the training progresses, the approach promotes the emergence of features that are (i) discriminative for the main learning task on the source domain and (ii) indiscriminate with respect to the shift between the domains. We show that this adaptation behaviour can be achieved in almost any feed-forward model by augmenting it with few standard layers and a new gradient reversal layer. The resulting augmented architecture can be trained using standard backpropagation and stochastic gradient descent, and can thus be implemented with little effort using any of the deep learning packages. We demonstrate the success of our approach for two distinct classification problems (document sentiment analysis and image classification), where state-of-the-art domain adaptation performance on standard benchmarks is achieved. We also validate the approach for descriptor learning task in the context of person re-identification application.

4,862 citations

01 Jan 2017
TL;DR: A new representation learning approach for domain adaptation, in which data at training and test time come from similar but different distributions, which can be achieved in almost any feed-forward model by augmenting it with few standard layers and a new gradient reversal layer.
Abstract: We introduce a new representation learning approach for domain adaptation, in which data at training and test time come from similar but different distributions. Our approach is directly inspired by the theory on domain adaptation suggesting that, for effective domain transfer to be achieved, predictions must be made based on features that cannot discriminate between the training (source) and test (target) domains. The approach implements this idea in the context of neural network architectures that are trained on labeled data from the source domain and unlabeled data from the target domain (no labeled target-domain data is necessary). As the training progresses, the approach promotes the emergence of features that are (i) discriminative for the main learning task on the source domain and (ii) indiscriminate with respect to the shift between the domains. We show that this adaptation behaviour can be achieved in almost any feed-forward model by augmenting it with few standard layers and a new gradient reversal layer. The resulting augmented architecture can be trained using standard backpropagation and stochastic gradient descent, and can thus be implemented with little effort using any of the deep learning packages. We demonstrate the success of our approach for two distinct classification problems (document sentiment analysis and image classification), where state-of-the-art domain adaptation performance on standard benchmarks is achieved. We also validate the approach for descriptor learning task in the context of person re-identification application.

1,713 citations

Proceedings Article
01 Nov 2016
TL;DR: It is shown that these operations can be performed in a simple and piecewise-differentiable manner using 1D histograms with soft assignment operations, which makes the proposed loss suitable for learning deep embeddings using stochastic optimization.
Abstract: We suggest a new loss for learning deep embeddings. The key characteristics of the new loss is the absence of tunable parameters and very good results obtained across a range of datasets and problems. The loss is computed by estimating two distribution of similarities for positive (matching) and negative (non-matching) point pairs, and then computing the probability of a positive pair to have a lower similarity score than a negative pair based on these probability estimates. We show that these operations can be performed in a simple and piecewise-differentiable manner using 1D histograms with soft assignment operations. This makes the proposed loss suitable for learning deep embeddings using stochastic optimization. The experiments reveal favourable results compared to recently proposed loss functions.

325 citations

Posted Content
TL;DR: In this paper, the authors proposed a loss for learning deep embeddings by estimating two distributions of similarities for positive and negative pairs, and then computing the probability of a positive pair having a lower similarity score than a negative pair based on the estimated similarity distributions.
Abstract: We suggest a loss for learning deep embeddings. The new loss does not introduce parameters that need to be tuned and results in very good embeddings across a range of datasets and problems. The loss is computed by estimating two distribution of similarities for positive (matching) and negative (non-matching) sample pairs, and then computing the probability of a positive pair to have a lower similarity score than a negative pair based on the estimated similarity distributions. We show that such operations can be performed in a simple and piecewise-differentiable manner using 1D histograms with soft assignment operations. This makes the proposed loss suitable for learning deep embeddings using stochastic optimization. In the experiments, the new loss performs favourably compared to recently proposed alternatives.

193 citations

Proceedings ArticleDOI
01 Aug 2017
TL;DR: The architecture is based on the deep bilinear convolutional network (Bilinear-CNN) that has been proposed recently for fine-grained classification of highly non-rigid objects and strikes a balance between rigid matching and completely ignoring spatial information.
Abstract: In this work we propose a new architecture for person re-identification. As the task of re-identification is inherently associated with embedding learning and non-rigid appearance description, our architecture is based on the deep bilinear convolutional network (Bilinear-CNN) that has been proposed recently for fine-grained classification of highly non-rigid objects. While the last stages of the original Bilinear-CNN architecture completely removes the geometric information from consideration by performing orderless pooling, we observe that a better embedding can be learned by performing bilinear pooling in a more local way, where each pooling is confined to a predefined region. Our architecture thus represents a compromise between traditional convolutional networks and bilinear CNNs and strikes a balance between rigid matching and completely ignoring spatial information. We perform the experimental validation of the new architecture on the three popular benchmark datasets (Market-1501, CUHK01, CUHK03), comparing it to baselines that include Bilinear-CNN as well as prior art. The new architecture outperforms the baseline on all three datasets, while performing better than state-of-the-art on two out of three. The code and the pretrained models of the approach will be made available at the time of publication.

183 citations


Cited by
More filters
Proceedings ArticleDOI
21 Jul 2017
TL;DR: Adversarial Discriminative Domain Adaptation (ADDA) as mentioned in this paper combines discriminative modeling, untied weight sharing, and a generative adversarial network (GAN) loss.
Abstract: Adversarial learning methods are a promising approach to training robust deep networks, and can generate complex samples across diverse domains. They can also improve recognition despite the presence of domain shift or dataset bias: recent adversarial approaches to unsupervised domain adaptation reduce the difference between the training and test domain distributions and thus improve generalization performance. However, while generative adversarial networks (GANs) show compelling visualizations, they are not optimal on discriminative tasks and can be limited to smaller shifts. On the other hand, discriminative approaches can handle larger domain shifts, but impose tied weights on the model and do not exploit a GAN-based loss. In this work, we first outline a novel generalized framework for adversarial adaptation, which subsumes recent state-of-the-art approaches as special cases, and use this generalized view to better relate prior approaches. We then propose a previously unexplored instance of our general framework which combines discriminative modeling, untied weight sharing, and a GAN loss, which we call Adversarial Discriminative Domain Adaptation (ADDA). We show that ADDA is more effective yet considerably simpler than competing domain-adversarial methods, and demonstrate the promise of our approach by exceeding state-of-the-art unsupervised adaptation results on standard domain adaptation tasks as well as a difficult cross-modality object classification task.

4,288 citations

Journal ArticleDOI
Cynthia Rudin1
TL;DR: This Perspective clarifies the chasm between explaining black boxes and using inherently interpretable models, outlines several key reasons why explainable black boxes should be avoided in high-stakes decisions, identifies challenges to interpretable machine learning, and provides several example applications whereinterpretable models could potentially replace black box models in criminal justice, healthcare and computer vision.
Abstract: Black box machine learning models are currently being used for high-stakes decision making throughout society, causing problems in healthcare, criminal justice and other domains. Some people hope that creating methods for explaining these black box models will alleviate some of the problems, but trying to explain black box models, rather than creating models that are interpretable in the first place, is likely to perpetuate bad practice and can potentially cause great harm to society. The way forward is to design models that are inherently interpretable. This Perspective clarifies the chasm between explaining black boxes and using inherently interpretable models, outlines several key reasons why explainable black boxes should be avoided in high-stakes decisions, identifies challenges to interpretable machine learning, and provides several example applications where interpretable models could potentially replace black box models in criminal justice, healthcare and computer vision. There has been a recent rise of interest in developing methods for ‘explainable AI’, where models are created to explain how a first ‘black box’ machine learning model arrives at a specific decision. It can be argued that instead efforts should be directed at building inherently interpretable models in the first place, in particular where they are applied in applications that directly affect human lives, such as in healthcare and criminal justice.

3,609 citations

Proceedings Article
03 Jul 2018
TL;DR: A novel discriminatively-trained Cycle-Consistent Adversarial Domain Adaptation model that adapts representations at both the pixel-level and feature-level, enforces cycle-consistency while leveraging a task loss, and does not require aligned pairs is proposed.
Abstract: Domain adaptation is critical for success in new, unseen environments. Adversarial adaptation models have shown tremendous progress towards adapting to new environments by focusing either on discovering domain invariant representations or by mapping between unpaired image domains. While feature space methods are difficult to interpret and sometimes fail to capture pixel-level and low-level domain shifts, image space methods sometimes fail to incorporate high level semantic knowledge relevant for the end task. We propose a model which adapts between domains using both generative image space alignment and latent representation space alignment. Our approach, Cycle-Consistent Adversarial Domain Adaptation (CyCADA), guides transfer between domains according to a specific discriminatively trained task and avoids divergence by enforcing consistency of the relevant semantics before and after adaptation. We evaluate our method on a variety of visual recognition and prediction settings, including digit classification and semantic segmentation of road scenes, advancing state-of-the-art performance for unsupervised adaptation from synthetic to real world driving domains.

2,459 citations

Journal ArticleDOI
01 Jan 2021
TL;DR: Transfer learning aims to improve the performance of target learners on target domains by transferring the knowledge contained in different but related source domains as discussed by the authors, in which the dependence on a large number of target-domain data can be reduced for constructing target learners.
Abstract: Transfer learning aims at improving the performance of target learners on target domains by transferring the knowledge contained in different but related source domains. In this way, the dependence on a large number of target-domain data can be reduced for constructing target learners. Due to the wide application prospects, transfer learning has become a popular and promising area in machine learning. Although there are already some valuable and impressive surveys on transfer learning, these surveys introduce approaches in a relatively isolated way and lack the recent advances in transfer learning. Due to the rapid expansion of the transfer learning area, it is both necessary and challenging to comprehensively review the relevant studies. This survey attempts to connect and systematize the existing transfer learning research studies, as well as to summarize and interpret the mechanisms and the strategies of transfer learning in a comprehensive way, which may help readers have a better understanding of the current research status and ideas. Unlike previous surveys, this survey article reviews more than 40 representative transfer learning approaches, especially homogeneous transfer learning approaches, from the perspectives of data and model. The applications of transfer learning are also briefly introduced. In order to show the performance of different transfer learning models, over 20 representative transfer learning models are used for experiments. The models are performed on three different data sets, that is, Amazon Reviews, Reuters-21578, and Office-31, and the experimental results demonstrate the importance of selecting appropriate transfer learning models for different applications in practice.

2,433 citations

Journal ArticleDOI
20 Nov 2017
TL;DR: In this paper, the authors provide a comprehensive tutorial and survey about the recent advances toward the goal of enabling efficient processing of DNNs, and discuss various hardware platforms and architectures that support DNN, and highlight key trends in reducing the computation cost of deep neural networks either solely via hardware design changes or via joint hardware and DNN algorithm changes.
Abstract: Deep neural networks (DNNs) are currently widely used for many artificial intelligence (AI) applications including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Accordingly, techniques that enable efficient processing of DNNs to improve energy efficiency and throughput without sacrificing application accuracy or increasing hardware cost are critical to the wide deployment of DNNs in AI systems. This article aims to provide a comprehensive tutorial and survey about the recent advances toward the goal of enabling efficient processing of DNNs. Specifically, it will provide an overview of DNNs, discuss various hardware platforms and architectures that support DNNs, and highlight key trends in reducing the computation cost of DNNs either solely via hardware design changes or via joint hardware design and DNN algorithm changes. It will also summarize various development resources that enable researchers and practitioners to quickly get started in this field, and highlight important benchmarking metrics and design considerations that should be used for evaluating the rapidly growing number of DNN hardware designs, optionally including algorithmic codesigns, being proposed in academia and industry. The reader will take away the following concepts from this article: understand the key design considerations for DNNs; be able to evaluate different DNN hardware implementations with benchmarks and comparison metrics; understand the tradeoffs between various hardware architectures and platforms; be able to evaluate the utility of various DNN design techniques for efficient processing; and understand recent implementation trends and opportunities.

2,391 citations