scispace - formally typeset
Search or ask a question
Author

Evgeniya Vaskova

Other affiliations: Russian Academy of Sciences
Bio: Evgeniya Vaskova is an academic researcher from Stanford University. The author has contributed to research in topics: Induced pluripotent stem cell & Embryonic stem cell. The author has an hindex of 7, co-authored 15 publications receiving 193 citations. Previous affiliations of Evgeniya Vaskova include Russian Academy of Sciences.

Papers
More filters
Journal ArticleDOI
TL;DR: The “epigenetic memory” phenomenon is discussed in the context of the reprogramming process, its influence on iPSC properties, and the possibilities of its application in cell technologies.
Abstract: To date biomedicine and pharmacology have required generating new and more consummate models. One of the most perspective trends in this field is using induced pluripotent stem cells (iPSCs). iPSC application requires careful high-throughput analysis at the molecular, epigenetic, and functional levels. The methods used have revealed that the expression pattern of genes and microRNA, DNA methylation, as well as the set and pattern of covalent histone modifications in iPSCs, are very similar to those in embryonic stem cells. Nevertheless, iPSCs have been shown to possess some specific features that can be acquired during the reprogramming process or are remnants of epigenomes and transcriptomes of the donor tissue. These residual signatures of epigenomes and transcriptomes of the somatic tissue of origin were termed "epigenetic memory." In this review, we discuss the "epigenetic memory" phenomenon in the context of the reprogramming process, its influence on iPSC properties, and the possibilities of its application in cell technologies.

84 citations

Journal ArticleDOI
TL;DR: In this paper, extracellular vesicle (EV)-mediated transfer of autologous mitochondria and their related energy source enhance cardiac function through restoration of myocardial bioenergetics.

60 citations

Journal ArticleDOI
TL;DR: iCM‐Ex improve post–myocardial infarction cardiac function by regulating autophagy in hypoxic cardiomyoytes, enabling a cell‐free, patient‐specific therapy for ischemic cardiopathy.
Abstract: Background Induced pluripotent stem cells and their differentiated cardiomyocytes (iCMs) have tremendous potential as patient‐specific therapy for ischemic cardiomyopathy following myocardial infar...

48 citations

Journal ArticleDOI
TL;DR: It is demonstrated that an additional mechanism of action of the pleiotropic effects of sacubitril/valsartan may be mediated by the modulation of the miRNA expression level in the exosome payload.
Abstract: Background Exosomes are small extracellular vesicles that function as intercellular messengers and effectors. Exosomal cargo contains regulatory small molecules, including miRNAs, mRNAs, lncRNAs, and small peptides that can be modulated by different pathological stimuli to the cells. One of the main mechanisms of action of drug therapy may be the altered production and/or content of the exosomes. Methods and Results We studied the effects on exosome production and content by neprilysin inhibitor/angiotensin receptor blockers, sacubitril/valsartan and valsartan alone, using human-induced pluripotent stem cell-derived cardiomyocytes under normoxic and hypoxic injury model in vitro, and assessed for physiologic correlation using an ischemic myocardial injury rodent model in vivo. We demonstrated that the treatment with sacubitril/valsartan and valsartan alone resulted in the increased production of exosomes by induced pluripotent stem cell-derived cardiomyocytes in vitro in both conditions as well as in the rat plasma in vivo. Next-generation sequencing of these exosomes exhibited downregulation of the expression of rno-miR-181a in the sacubitril/valsartan treatment group. In vivo studies employing chronic rodent myocardial injury model demonstrated that miR-181a antagomir has a beneficial effect on cardiac function. Subsequently, immunohistochemical and molecular studies suggested that the downregulation of miR-181a resulted in the attenuation of myocardial fibrosis and hypertrophy, restoring the injured rodent heart after myocardial infarction. Conclusions We demonstrate that an additional mechanism of action of the pleiotropic effects of sacubitril/valsartan may be mediated by the modulation of the miRNA expression level in the exosome payload.

48 citations

Journal ArticleDOI
01 Sep 2021
TL;DR: An in vitro clinical trial evaluating the efficacy and putative mechanisms of SENECA trial–specific MSCs in treating doxorubicin (DOX) injury suggested a mechanism by which MSC's may improve cardiovascular performance in AIC independent of regeneration, which could inform future trial design evaluating the therapeutic potential of M SCs.
Abstract: Background Anthracycline-induced cardiomyopathy (AIC) is a significant source of morbidity and mortality in cancer survivors. The role of mesenchymal stem cells (MSCs) in treating AIC was ...

30 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

01 Jan 2011
TL;DR: In this article, the authors explored the molecular mechanisms underlying the reprogramming process by exploiting a secondary mouse embryonic fibroblast model that forms iPSCs with high efficiency upon inducible expression of Oct4, Klf4, c-Myc, and Sox2.
Abstract: Somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) by expression of defined embryonic factors. However, little is known of the molecular mechanisms underlying the reprogramming process. Here we explore somatic cell reprogramming by exploiting a secondary mouse embryonic fibroblast model that forms iPSCs with high efficiency upon inducible expression of Oct4, Klf4, c-Myc, and Sox2. Temporal analysis of gene expression revealed that reprogramming is a multistep process that is characterized by initiation, maturation, and stabilization phases. Functional analysis by systematic RNAi screening further uncovered a key role for BMP signaling and the induction of mesenchymal-to-epithelial transition (MET) during the initiation phase. We show that this is linked to BMP-dependent induction of miR-205 and the miR-200 family of microRNAs that are key regulators of MET. These studies thus define a multistep mechanism that incorporates a BMP-miRNA-MET axis during somatic cell reprogramming. PAPERCLIP:

836 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the biological role of extracellular vesicles and how they can be applied as drug carriers, focusing on the current state of their manufacturing and existing challenges.
Abstract: Extracellular-vesicle-based cell-to-cell communication is conserved across all kingdoms of life. There is compelling evidence that extracellular vesicles are involved in major (patho)physiological processes, including cellular homoeostasis, infection propagation, cancer development and cardiovascular diseases. Various studies suggest that extracellular vesicles have several advantages over conventional synthetic carriers, opening new frontiers for modern drug delivery. Despite extensive research, clinical translation of extracellular-vesicle-based therapies remains challenging. Here, we discuss the uniqueness of extracellular vesicles along with critical design and development steps required to utilize their full potential as drug carriers, including loading methods, in-depth characterization and large-scale manufacturing. We compare the prospects of extracellular vesicles with those of the well established liposomes and provide guidelines to direct the process of developing vesicle-based drug delivery systems. In this Review the authors discuss the biological role of extracellular vesicles and how they can be applied as drug carriers, focusing on the current state of their manufacturing and existing challenges.

481 citations

Journal ArticleDOI
TL;DR: The advantages of keratinocytes from human plucked hair are highlighted as a widely usable, noninvasive harvesting method for primary material in comparison with other commonly used cell types.
Abstract: The breakthrough of reprogramming human somatic cells was achieved in 2006 by the work of Yamanaka and Takahashi. From this point, fibroblasts are the most commonly used primary somatic cell type for the generation of induced pluripotent stem cells (iPSCs). Various characteristics of fibroblasts supported their utilization for the groundbreaking experiments of iPSC generation. One major advantage is the high availability of fibroblasts which can be easily isolated from skin biopsies. Furthermore, their cultivation, propagation, and cryoconservation properties are uncomplicated with respect to nutritional requirements and viability in culture. However, the required skin biopsy remains an invasive approach, representing a major drawback for using fibroblasts as the starting material. More and more studies appeared over the last years, describing the reprogramming of other human somatic cell types. Cells isolated from blood samples or urine, as well as more unexpected cell types, like pancreatic islet beta cells, synovial cells, or mesenchymal stromal cells from wisdom teeth, show promising characteristics for a reprogramming strategy. Here, we want to highlight the advantages of keratinocytes from human plucked hair as a widely usable, noninvasive harvesting method for primary material in comparison with other commonly used cell types.

190 citations

01 Jan 2012
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.

173 citations