scispace - formally typeset
Search or ask a question
Author

Evgeny Sklyanin

Bio: Evgeny Sklyanin is an academic researcher from University of York. The author has contributed to research in topics: Quantum inverse scattering method & Symmetric function. The author has an hindex of 30, co-authored 70 publications receiving 7958 citations. Previous affiliations of Evgeny Sklyanin include University of Helsinki & Kyoto University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a new class of boundary conditions for quantum systems integrable by means of the quantum inverse scattering (R-matrix) method is described, which allows the author to treat open quantum chains with appropriate boundary terms in the Hamiltonian.
Abstract: A new class of boundary conditions is described for quantum systems integrable by means of the quantum inverse scattering (R-matrix) method. The method proposed allows the author to treat open quantum chains with appropriate boundary terms in the Hamiltonian. The general considerations are applied to the XXZ and XYZ models, the nonlinear Schrodinger equation and Toda chain.

1,774 citations

Journal ArticleDOI
TL;DR: In this article, the problem of constructing the GL(N,ℂ) solutions to the Yang-Baxter equation (factorizedS-matrices) is considered.
Abstract: The problem of constructing the GL(N,ℂ) solutions to the Yang-Baxter equation (factorizedS-matrices) is considered. In caseN=2 all the solutions for arbitrarily finite-dimensional irreducible representations of GL(2,ℂ) are obtained and their eigenvalues are calculated. Some results for the caseN>2 are also presented.

979 citations

Journal ArticleDOI
TL;DR: In this paper, the authors give the basic definitions connected with the Yang-Baxter equation (factorization condition for a multiparticle S-matrix) and formulate the problem of classifying its solutions.
Abstract: We give the basic definitions connected with the Yang-Baxter equation (factorization condition for a multiparticle S-matrix) and formulate the problem of classifying its solutions. We list the known methods of solution of the Y-B equation, and also various applications of this equation to the theory of completely integrable quantum and classical systems. A generalization of the Y-B equation to the case ofZ 2-graduation is obtained, a possible connection with the theory of representations is noted. The supplement contains about 20 explicit solutions.

468 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Aq-difference analogue of the universal enveloping algebra U(g) of a simple Lie algebra g is introduced in this article, and its structure and representations are studied in the simplest case g=sl(2).
Abstract: Aq-difference analogue of the universal enveloping algebra U(g) of a simple Lie algebra g is introduced. Its structure and representations are studied in the simplest case g=sl(2). It is then applied to determine the eigenvalues of the trigonometric solution of the Yang-Baxter equation related to sl(2) in an arbitrary finite-dimensional irreducible representation.

2,767 citations

Journal ArticleDOI
TL;DR: In this paper, a new class of boundary conditions for quantum systems integrable by means of the quantum inverse scattering (R-matrix) method is described, which allows the author to treat open quantum chains with appropriate boundary terms in the Hamiltonian.
Abstract: A new class of boundary conditions is described for quantum systems integrable by means of the quantum inverse scattering (R-matrix) method. The method proposed allows the author to treat open quantum chains with appropriate boundary terms in the Hamiltonian. The general considerations are applied to the XXZ and XYZ models, the nonlinear Schrodinger equation and Toda chain.

1,774 citations

Journal ArticleDOI
TL;DR: Baxter has inherited the mantle of Onsager who started the process by solving exactly the two-dimensional Ising model in 1944 as mentioned in this paper, and there has been a growing belief that all the twodimensional lattice statistical models will eventually be solved and that it will be Professor Baxter who solves them.
Abstract: R J Baxter 1982 London: Academic xii + 486 pp price £43.60 Over the past few years there has been a growing belief that all the twodimensional lattice statistical models will eventually be solved and that it will be Professor Baxter who solves them. Baxter has inherited the mantle of Onsager who started the process by solving exactly the two-dimensional Ising model in 1944.

1,658 citations

Book ChapterDOI
24 Sep 1987
TL;DR: The quantum inverse scattering method for solving nonlinear equations of evolution, the quantum theory of magnets, the method of commuting transfer-matrices in classical statistical mechanics, and factorizable scattering theory as discussed by the authors emerged as a natural development of the various directions in mathematical physics.
Abstract: Publisher Summary This chapter focuses on the quantization of lie groups and lie algebras. The Algebraic Bethe Ansatz—the quantum inverse scattering method—emerges as a natural development of the various directions in mathematical physics: the inverse scattering method for solving nonlinear equations of evolution, the quantum theory of magnets, the method of commuting transfer-matrices in classical statistical mechanics, and factorizable scattering theory. The chapter discusses quantum formal groups, a finite-dimensional example, an infinite-dimensional example, and reviews the deformation theory and quantum groups.

1,584 citations

Journal ArticleDOI
TL;DR: The quantum group SU(2)q is discussed in this paper by a method analogous to that used by Schwinger to develop the quantum theory of angular momentum such theory of the q-analogue of the quantum harmonic oscillator, as is required for this purpose.
Abstract: The quantum group SU(2)q is discussed by a method analogous to that used by Schwinger to develop the quantum theory of angular momentum Such theory of the q-analogue of the quantum harmonic oscillator, as is required for this purpose, is developed

1,555 citations