scispace - formally typeset
Search or ask a question
Author

F. A. Trumbore

Bio: F. A. Trumbore is an academic researcher. The author has contributed to research in topics: Solubility & Solvus. The author has an hindex of 1, co-authored 1 publications receiving 1210 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the available data on solid solubilities of impurity elements in germanium and silicon are summarized in the form of solidus or solvus curves.
Abstract: The available data on solid solubilities of impurity elements in germanium and silicon are summarized in the form of solidus or solvus curves. New solubility data are presented for the lead-germanium, zinc-germanium, indium-germanium, antimony-silicon, gallium-silicon and aluminum-silicon systems. The correlation of the solid solubilities with the heats of sublimation and the atom sizes of the impurity elements is considered.

1,250 citations


Cited by
More filters
Book
Yuan Taur1, Tak H. Ning1
01 Jan 2016
TL;DR: In this article, the authors highlight the intricate interdependencies and subtle tradeoffs between various practically important device parameters, and also provide an in-depth discussion of device scaling and scaling limits of CMOS and bipolar devices.
Abstract: Learn the basic properties and designs of modern VLSI devices, as well as the factors affecting performance, with this thoroughly updated second edition. The first edition has been widely adopted as a standard textbook in microelectronics in many major US universities and worldwide. The internationally-renowned authors highlight the intricate interdependencies and subtle tradeoffs between various practically important device parameters, and also provide an in-depth discussion of device scaling and scaling limits of CMOS and bipolar devices. Equations and parameters provided are checked continuously against the reality of silicon data, making the book equally useful in practical transistor design and in the classroom. Every chapter has been updated to include the latest developments, such as MOSFET scale length theory, high-field transport model, and SiGe-base bipolar devices.

2,680 citations

Journal ArticleDOI
TL;DR: This review explores different material classes for plasmonic and metamaterial applications, such as conventional semiconductors, transparent conducting oxides, perovskiteOxides, metal nitrides, silicides, germanides, and 2D materials such as graphene.
Abstract: Materials research plays a vital role in transforming breakthrough scientific ideas into next-generation technology. Similar to the way silicon revolutionized the microelectronics industry, the proper materials can greatly impact the field of plasmonics and metamaterials. Currently, research in plasmonics and metamaterials lacks good material building blocks in order to realize useful devices. Such devices suffer from many drawbacks arising from the undesirable properties of their material building blocks, especially metals. There are many materials, other than conventional metallic components such as gold and silver, that exhibit metallic properties and provide advantages in device performance, design flexibility, fabrication, integration, and tunability. This review explores different material classes for plasmonic and metamaterial applications, such as conventional semiconductors, transparent conducting oxides, perovskite oxides, metal nitrides, silicides, germanides, and 2D materials such as graphene. This review provides a summary of the recent developments in the search for better plasmonic materials and an outlook of further research directions.

1,836 citations

Book ChapterDOI
01 Dec 1973
TL;DR: In this paper, the authors review some of the general features of the characteristics of implanted layers in terms of depth distribution, radiation damage, and electron activity in compound semiconductors, particularly GaAs.
Abstract: Ion implantation is being applied extensively to silicon device technology. Two principle features are utilized- 1) charge control in MOS structures for threshold shift, autoregistration, and complementary wells and 2) distribution control in microwave and bipolar structures. Another feature that has not been extensively exploited is to combine the advantages of the high resolution capabilities of electric beam pattern delineation with the low lateral spread inherent in the implantation process. This talk reviews some of the general features of the characteristics of implanted layers in terms of depth distribution, radiation damage and electron activity. Implantation processes in silicon are reasonably well understood. There remain areas which require further clarification. For compound semiconductors, particularly GaAs, implantation techniques offer attractive possibilities for the fabrication of high frequency devices. In these materials, the substrate temperature during implantation and the dielectric coating required to prevent dissociation during thermal anneal play major roles.

1,221 citations

01 Jan 1983
TL;DR: In this paper, the authors review some of the general features of the characteristics of implanted layers in terms of depth distribution, radiation damage, and electron activity in compound semiconductors, particularly GaAs.
Abstract: Ion implantation is being applied extensively to silicon device technology. Two principle features are utilized- 1) charge control in MOS structures for threshold shift, autoregistration, and complementary wells and 2) distribution control in microwave and bipolar structures. Another feature that has not been extensively exploited is to combine the advantages of the high resolution capabilities of electric beam pattern delineation with the low lateral spread inherent in the implantation process. This talk reviews some of the general features of the characteristics of implanted layers in terms of depth distribution, radiation damage and electron activity. Implantation processes in silicon are reasonably well understood. There remain areas which require further clarification. For compound semiconductors, particularly GaAs, implantation techniques offer attractive possibilities for the fabrication of high frequency devices. In these materials, the substrate temperature during implantation and the dielectric coating required to prevent dissociation during thermal anneal play major roles.

1,188 citations

Journal ArticleDOI
TL;DR: In this paper, a review on the diffusion, solubility and electrical activity of 3D transition metals in silicon is given, which can be divided into two groups according to the respective enthalpy of formation of the solid solution.
Abstract: A review is given on the diffusion, solubility and electrical activity of 3d transition metals in silicon. Transition elements (especially, Cr, Mn, Fe, Co, Ni, and Cu) diffuse interstitially and stay in the interstitial site in thermal equilibrium at the diffusion temperature. The parameters of the liquidus curves are identical for the Si:Ti — Si:Ni melts, indicating comparable silicon-metal interaction for all these elements. Only Cr, Mn, and Fe could be identified in undisturbed interstitial sites after quenching, the others precipitated or formed complexes. The 3d elements can be divided into two groups according to the respective enthalpy of formation of the solid solution. The distinction can arise from different charge states of these impurities at the diffusion temperature. For the interstitial 3d atoms remaining after quenching, reliable energy levels are established from the literature and compared with recent calculations.

987 citations