scispace - formally typeset
Search or ask a question
Author

F.A. Williams

Bio: F.A. Williams is an academic researcher from University of California, San Diego. The author has an hindex of 1, co-authored 1 publications receiving 207 citations.

Papers
More filters
Journal ArticleDOI
01 Jan 1977
TL;DR: In this paper, the authors provide a framework within which various studies can be placed, focusing on the underlying heat-transfer, fluid-flow and chemical-kinetic phenomena of fire spread.
Abstract: Mechanisms involved in many types of fire spread are described in a manner that sacrifices accuracy for the purpose of emphasizing general aspects of the underlying heat-transfer, fluid-flow and chemical-kinetic phenomena. Consideration is given to conditions for transition from one mode of propagation to another. Research on fire spread has been pursued intensively in recent years, and in the present contribution at attempt is made to provide a framework within which various studies can be placed. Entries to current literature are provided. Areas of apparent importance that do not seem to have been emphasized are suggested.

241 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, an extensive literature review conducted within Edinburgh University's Fire Safety Engineering Group and sponsored by the UK Home Office Fire Research and Development Group was conducted to establish the current state-of-the-art regarding the use of water sprays for the suppression and extinguishment of typical (Class ‘A) compartment fires and to identify where gaps exist in the current knowledge.

411 citations

Journal ArticleDOI
TL;DR: In this article, the authors focus on the latest fire-safety issues of EVs related to thermal runaway and fire in Li-ion batteries and provide a qualitative understanding of the fire risk and hazards associated with battery powered EVs.
Abstract: Over the last decade, the electric vehicle (EV) has significantly changed the car industry globally, driven by the fast development of Li-ion battery technology. However, the fire risk and hazard associated with this type of high-energy battery has become a major safety concern for EVs. This review focuses on the latest fire-safety issues of EVs related to thermal runaway and fire in Li-ion batteries. Thermal runaway or fire can occur as a result of extreme abuse conditions that may be the result of the faulty operation or traffic accidents. Failure of the battery may then be accompanied by the release of toxic gas, fire, jet flames, and explosion. This paper is devoted to reviewing the battery fire in battery EVs, hybrid EVs, and electric buses to provide a qualitative understanding of the fire risk and hazards associated with battery powered EVs. In addition, important battery fire characteristics involved in various EV fire scenarios, obtained through testing, are analysed. The tested peak heat release rate (PHHR in MW) varies with the energy capacity of LIBs ($$E_{B}$$ in Wh) crossing different scales as $$PHRR = 2E_{B}^{0.6}$$. For the full-scale EV fire test, limited data have revealed that the heat release and hazard of an EV fire are comparable to that of a fossil-fuelled vehicle fire. Once the onboard battery involved in fire, there is a greater difficulty in suppressing EV fires, because the burning battery pack inside is inaccessible to externally applied suppressant and can re-ignite without sufficient cooling. As a result, an excessive amount of suppression agent is needed to cool the battery, extinguish the fire, and prevent reignition. By addressing these concerns, this review aims to aid researchers and industries working with batteries, EVs and fire safety engineering, to encourage active research collaborations, and attract future research and development on improving the overall safety of future EVs. Only then will society achieve the same comfort level for EVs as they have for conventional vehicles.

303 citations

Journal ArticleDOI
TL;DR: In this paper, heat transfer and gas phase chemical kinetic aspects of the flame spread process are addressed separately for the spread of flames in oxidizing flows that oppose or concur with the direction of propagation.
Abstract: Recent advances in the experimental study of the mechanisms controlling the spread of flames over the surface of combustible solids are summarized in this work. The heat transfer and gas phase chemical kinetic aspects of the flame spread process are addressed separately for the spread of flames in oxidizing flows that oppose or concur with the direction of propagation. The realization that, in most practical situations, the spread of fire in opposed gas flows occurs at near extinction or non-propagating conditions is particularly significant. Under these circumstances, gas phase chemical kinetics plays a critical role and it must be considered if realistic descriptions of the flame spread process are attempted. In the concurrent mode of flame spread, heat transfer from the flame to the unburnt fuel appears to be the primary controlling mechanism. Although gas phase chemcial kinetics is unimportant in the flame spreading process, it is important in the establishment and extension of the diffusion ...

266 citations

Journal ArticleDOI
TL;DR: A review of recent progress in understanding turbulent, lifted hydrocarbon jet flames and the conditions under which they stabilize can be found in this paper, focusing on experimental results and the physically based theories that have emerged from their interpretations, as well as from the theoretically founded notions that have been supported.

248 citations

Journal ArticleDOI
TL;DR: A review of the essential ingredients needed to make a mathematical model of fire spread through a fuel bed is given in this article, where a unified mathematical treatment is presented, which permits a more objective comparison of the different physical models.

205 citations