scispace - formally typeset
F

F. Agostini

Researcher at University of Bologna

Publications -  71
Citations -  8925

F. Agostini is an academic researcher from University of Bologna. The author has contributed to research in topics: Dark matter & Weakly interacting massive particles. The author has an hindex of 34, co-authored 63 publications receiving 6734 citations. Previous affiliations of F. Agostini include Istituto Nazionale di Fisica Nucleare.

Papers
More filters
Journal ArticleDOI

Dark Matter Search Results from a One Ton-Year Exposure of XENON1T.

Elena Aprile, +119 more
TL;DR: In this article, a search for weakly interacting massive particles (WIMPs) using 278.8 days of data collected with the XENON1T experiment at LNGS is reported.
Journal ArticleDOI

First Dark Matter Search Results from the XENON1T Experiment

Elena Aprile, +124 more
TL;DR: The first dark matter search results from XENON1T, a ∼2000-kg-target-mass dual-phase (liquid-gas) xenon time projection chamber in operation at the Laboratori Nazionali del Gran Sasso in Italy, are reported and a profile likelihood analysis shows that the data are consistent with the background-only hypothesis.
Journal ArticleDOI

Physics reach of the XENON1T dark matter experiment

Elena Aprile, +115 more
TL;DR: In this article, the expected sensitivity of the Xenon1T experiment to the spin-independent WIMP-nucleon interaction cross section was investigated based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds.
Journal ArticleDOI

DARWIN: towards the ultimate dark matter detector

Jelle Aalbers, +120 more
TL;DR: DARk matter WImp search with liquid xenoN (DARWIN) as mentioned in this paper is an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core.
Journal ArticleDOI

Excess electronic recoil events in XENON1T

Elena Aprile, +140 more
- 12 Oct 2020 - 
TL;DR: In this article, the XENON1T data was used for searches for new physics with low-energy electronic recoil data recorded with the Xenon1T detector, which enabled one of the most sensitive searches for solar axions, an enhanced neutrino magnetic moment using solar neutrinos, and bosonic dark matter.