scispace - formally typeset
Search or ask a question
Author

F. Ann Ran

Bio: F. Ann Ran is an academic researcher from Harvard University. The author has contributed to research in topics: Cas9 & Genome editing. The author has an hindex of 10, co-authored 10 publications receiving 21895 citations. Previous affiliations of F. Ann Ran include McGovern Institute for Brain Research & Broad Institute.
Topics: Cas9, Genome editing, Guide RNA, Genome, CRISPR

Papers
More filters
Journal ArticleDOI
TL;DR: A set of tools for Cas9-mediated genome editing via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, as well as generation of modified cell lines for downstream functional studies are described.
Abstract: Targeted nucleases are powerful tools for mediating genome alteration with high precision. The RNA-guided Cas9 nuclease from the microbial clustered regularly interspaced short palindromic repeats (CRISPR) adaptive immune system can be used to facilitate efficient genome engineering in eukaryotic cells by simply specifying a 20-nt targeting sequence within its guide RNA. Here we describe a set of tools for Cas9-mediated genome editing via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, as well as generation of modified cell lines for downstream functional studies. To minimize off-target cleavage, we further describe a double-nicking strategy using the Cas9 nickase mutant with paired guide RNAs. This protocol provides experimentally derived guidelines for the selection of target sites, evaluation of cleavage efficiency and analysis of off-target activity. Beginning with target design, gene modifications can be achieved within as little as 1-2 weeks, and modified clonal cell lines can be derived within 2-3 weeks.

8,663 citations

Journal ArticleDOI
TL;DR: In this article, the Streptococcus pyogenes Cas9 (SpCas9) nuclease can be efficiently targeted to genomic loci by means of single-guide RNAs (sgRNAs) to enable genome editing.
Abstract: The Streptococcus pyogenes Cas9 (SpCas9) nuclease can be efficiently targeted to genomic loci by means of single-guide RNAs (sgRNAs) to enable genome editing. Here, we characterize SpCas9 targeting specificity in human cells to inform the selection of target sites and avoid off-target effects. Our study evaluates >700 guide RNA variants and SpCas9-induced indel mutation levels at >100 predicted genomic off-target loci in 293T and 293FT cells. We find that SpCas9 tolerates mismatches between guide RNA and target DNA at different positions in a sequence-dependent manner, sensitive to the number, position and distribution of mismatches. We also show that SpCas9-mediated cleavage is unaffected by DNA methylation and that the dosage of SpCas9 and sgRNA can be titrated to minimize off-target modification. To facilitate mammalian genome engineering applications, we provide a web-based software tool to guide the selection and validation of target sequences as well as off-target analyses.

4,113 citations

01 Sep 2013
TL;DR: It is found that SpCas9 tolerates mismatches between guide RNA and target DNA at different positions in a sequence-dependent manner, sensitive to the number, position and distribution of mismatches.
Abstract: The Streptococcus pyogenes Cas9 (SpCas9) nuclease can be efficiently targeted to genomic loci by means of single-guide RNAs (sgRNAs) to enable genome editing. Here, we characterize SpCas9 targeting specificity in human cells to inform the selection of target sites and avoid off-target effects. Our study evaluates >700 guide RNA variants and SpCas9-induced indel mutation levels at >100 predicted genomic off-target loci in 293T and 293FT cells. We find that SpCas9 tolerates mismatches between guide RNA and target DNA at different positions in a sequence-dependent manner, sensitive to the number, position and distribution of mismatches. We also show that SpCas9-mediated cleavage is unaffected by DNA methylation and that the dosage of SpCas9 and sgRNA can be titrated to minimize off-target modification. To facilitate mammalian genome engineering applications, we provide a web-based software tool to guide the selection and validation of target sequences as well as off-target analyses.

3,421 citations

Journal ArticleDOI
12 Sep 2013-Cell
TL;DR: In this paper, an approach that combines a Cas9 nickase mutant with paired guide RNAs to introduce targeted double-strand breaks is described. But the approach is limited to mouse zygotes.

3,026 citations

01 Sep 2013
TL;DR: It is demonstrated that using paired nicking can reduce off-target activity by 50- to 1,500-fold in cell lines and to facilitate gene knockout in mouse zygotes without sacrificing on-target cleavage efficiency.
Abstract: Targeted genome editing technologies have enabled a broad range of research and medical applications. The Cas9 nuclease from the microbial CRISPR-Cas system is targeted to specific genomic loci by a 20 nt guide sequence, which can tolerate certain mismatches to the DNA target and thereby promote undesired off-target mutagenesis. Here, we describe an approach that combines a Cas9 nickase mutant with paired guide RNAs to introduce targeted double-strand breaks. Because individual nicks in the genome are repaired with high fidelity, simultaneous nicking via appropriately offset guide RNAs is required for double-stranded breaks and extends the number of specifically recognized bases for target cleavage. We demonstrate that using paired nicking can reduce off-target activity by 50- to 1,500-fold in cell lines and to facilitate gene knockout in mouse zygotes without sacrificing on-target cleavage efficiency. This versatile strategy enables a wide variety of genome editing applications that require high specificity.

1,947 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A set of tools for Cas9-mediated genome editing via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, as well as generation of modified cell lines for downstream functional studies are described.
Abstract: Targeted nucleases are powerful tools for mediating genome alteration with high precision. The RNA-guided Cas9 nuclease from the microbial clustered regularly interspaced short palindromic repeats (CRISPR) adaptive immune system can be used to facilitate efficient genome engineering in eukaryotic cells by simply specifying a 20-nt targeting sequence within its guide RNA. Here we describe a set of tools for Cas9-mediated genome editing via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, as well as generation of modified cell lines for downstream functional studies. To minimize off-target cleavage, we further describe a double-nicking strategy using the Cas9 nickase mutant with paired guide RNAs. This protocol provides experimentally derived guidelines for the selection of target sites, evaluation of cleavage efficiency and analysis of off-target activity. Beginning with target design, gene modifications can be achieved within as little as 1-2 weeks, and modified clonal cell lines can be derived within 2-3 weeks.

8,663 citations

Journal ArticleDOI
28 Nov 2014-Science
TL;DR: The power of the CRISPR-Cas9 technology to systematically analyze gene functions in mammalian cells, study genomic rearrangements and the progression of cancers or other diseases, and potentially correct genetic mutations responsible for inherited disorders is illustrated.
Abstract: The advent of facile genome engineering using the bacterial RNA-guided CRISPR-Cas9 system in animals and plants is transforming biology. We review the history of CRISPR (clustered regularly interspaced palindromic repeat) biology from its initial discovery through the elucidation of the CRISPR-Cas9 enzyme mechanism, which has set the stage for remarkable developments using this technology to modify, regulate, or mark genomic loci in a wide variety of cells and organisms from all three domains of life. These results highlight a new era in which genomic manipulation is no longer a bottleneck to experiments, paving the way toward fundamental discoveries in biology, with applications in all branches of biotechnology, as well as strategies for human therapeutics.

4,774 citations

Journal ArticleDOI
05 Jun 2014-Cell
TL;DR: In this paper, the authors describe the development and applications of Cas9 for a variety of research or translational applications while highlighting challenges as well as future directions, and highlight challenges and future directions.

4,361 citations

Journal ArticleDOI
03 Jan 2014-Science
TL;DR: This work shows that lentiviral delivery of a genome-scale CRISPR-Cas9 knockout (GeCKO) library targeting 18,080 genes with 64,751 unique guide sequences enables both negative and positive selection screening in human cells, and observes a high level of consistency between independent guide RNAs targeting the same gene and a high rate of hit confirmation.
Abstract: The simplicity of programming the CRISPR (clustered regularly interspaced short palindromic repeats)–associated nuclease Cas9 to modify specific genomic loci suggests a new way to interrogate gene function on a genome-wide scale. We show that lentiviral delivery of a genome-scale CRISPR-Cas9 knockout (GeCKO) library targeting 18,080 genes with 64,751 unique guide sequences enables both negative and positive selection screening in human cells. First, we used the GeCKO library to identify genes essential for cell viability in cancer and pluripotent stem cells. Next, in a melanoma model, we screened for genes whose loss is involved in resistance to vemurafenib, a therapeutic RAF inhibitor. Our highest-ranking candidates include previously validated genes NF1 and MED12 , as well as novel hits NF2 , CUL3 , TADA2B , and TADA1. We observe a high level of consistency between independent guide RNAs targeting the same gene and a high rate of hit confirmation, demonstrating the promise of genome-scale screening with Cas9.

4,147 citations

Journal ArticleDOI
TL;DR: In this paper, Zhang et al. used a Genome-scale CRISPR Knock-Out (GeCKO) library to identify loss-of-function mutations in a melanoma model.
Abstract: Genome-wide, targeted loss-of-function pooled screens using the CRISPR (clustered regularly interspaced short palindrome repeats)–associated nuclease Cas9 in human and mouse cells provide an alternative screening system to RNA interference (RNAi) and have been used to reveal new mechanisms in diverse biological models1-4. Previously, we used a Genome-scale CRISPR Knock-Out (GeCKO) library to identify loss-of-function mutations conferring vemurafenib resistance in a melanoma model1. However, initial lentiviral delivery systems for CRISPR screening had low viral titer or required a cell line already expressing Cas9, limiting the range of biological systems amenable to screening. Here, we sought to improve both the lentiviral packaging and choice of guide sequences in our original GeCKO library1, where a pooled library of synthesized oligonucleotides was cloned into a lentiviral backbone containing both the Streptococcus pyogenes Cas9 nuclease and the single guide RNA (sgRNA) scaffold. To create a new vector capable of producing higher-titer virus (lentiCRISPRv2), we made several modifications, including removal of one of the nuclear localization signals (NLS), human codon-optimization of the remaining NLS and P2A bicistronic linker sequences, and repositioning of the U6-driven sgRNA cassette (Fig. 1a). These changes resulted in a ~10-fold increase in functional viral titer over lentiCRISPRv11 (Fig. 1b). Figure 1 New lentiviral CRISPR designs produce viruses with higher functional titer. To further increase viral titer, we also cloned a two-vector system, in which Cas9 (lentiCas9-Blast) and sgRNA (lentiGuide-Puro) are delivered using separate viral vectors with distinct antibiotic selection markers (Fig. 1a). LentiGuide-Puro has a ~100-fold increase in functional viral titer over the original lentiCRISPRv1 (Fig. 1b). Both single and dual-vector systems mediate efficient knock-out of a genomically-integrated copy of EGFP in human cells (Supplementary Fig. 1). Whereas the dual vector system enables generation of Cas9-expressing cell lines which can be subsequently used for screens using lentiGuide-Puro, the single vector lentiCRISPRv2 may be better suited for in vivo or primary cell screening applications. In addition to the vector improvements, we designed and synthesized new human and mouse GeCKOv2 sgRNA libraries (Supplementary Methods) with several improvements (Table 1): First, for both human and mouse libraries, to target all genes with a uniform number of sgRNAs, we selected 6 sgRNAs per gene distributed over 3-4 constitutively expressed exons. Second, to further minimize off-target genome modification, we improved the calculation of off-target scores based on specificity analysis5. Third, to inactivate microRNAs (miRNAs) which play a key role in transcriptional regulation, we added sgRNAs to direct mutations to the pre-miRNA hairpin structure6. Finally, we targeted ~1000 additional genes not included in the original GeCKO library. Table 1 Comparison of new GeCKO v2 human and mouse sgRNA libraries with existing CRISPR libraries. Both libraries, mouse and human, are divided into 2 sub-libraries — containing 3 sgRNAs targeting each gene in the genome, as well as 1000 non-targeting control sgRNAs. Screens can be performed by combining both sub-libraries, yielding 6 sgRNAs per gene, for higher coverage. Alternatively, individual sub-libraries can be used in situations where cell numbers are limiting (eg. primary cells, in vivo screens). The human and mouse libraries have been cloned into lentiCRISPRv2 and into lentiGuide-Puro and deep sequenced to ensure uniform representation (Supplementary Fig. 2, 3). These new lentiCRISPR vectors and human and mouse libraries further improve the GeCKO reagents for diverse screening applications. Reagents are available to the academic community through Addgene and associated protocols, support forums, and computational tools are available via the Zhang lab website (www.genome-engineering.org).

3,833 citations