scispace - formally typeset
Search or ask a question
Author

F. Baker

Bio: F. Baker is an academic researcher. The author has contributed to research in topics: The Internet & Management information base. The author has an hindex of 21, co-authored 39 publications receiving 6006 citations.

Papers
More filters
01 Dec 1998
TL;DR: Differentiated services enhancements to the Internet protocol are intended to enable scalable service discrimination in the Internet without the need for per-flow state and signaling at every hop.
Abstract: Differentiated services enhancements to the Internet protocol are intended to enable scalable service discrimination in the Internet without the need for per-flow state and signaling at every hop. A variety of services may be built from a small, well-defined set of building blocks which are deployed in network nodes. The services may be either end-to-end or intra-domain; they include both those that can satisfy quantitative performance requirements (e.g., peak bandwidth) and those based on relative performance (e.g., "class" differentiation). Services can be constructed by a combination of:

1,850 citations

01 Jun 1999
TL;DR: This document defines a general use Differentiated Services (DS) [Blake] Per-Hop-Behavior (PHB) Group called Assured Forwarding (AF), which provides delivery of IP packets in four independently forwarded AF classes.
Abstract: This document defines a general use Differentiated Services (DS) [Blake] Per-Hop-Behavior (PHB) Group called Assured Forwarding (AF). The AF PHB group provides delivery of IP packets in four independently forwarded AF classes. Within each AF class, an IP packet can be assigned one of three different levels of drop precedence. A DS node does not reorder IP packets of the same microflow if they belong to the same AF class.

1,479 citations

01 Jun 1995
TL;DR: This memo defines and discusses requirements for devices that perform the network layer forwarding function of the Internet protocol suite.
Abstract: This memo defines and discusses requirements for devices that perform the network layer forwarding function of the Internet protocol suite. [STANDARDS-TRACK]

609 citations

01 Nov 2000
TL;DR: This document describes a framework by which Integrated Services may be supported over Diffserv networks.
Abstract: The Integrated Services (Intserv) architecture provides a means for the delivery of end-to-end Quality of Service (QoS) to applications over heterogeneous networks. To support this end-to-end model, the Intserv architecture must be supported over a wide variety of different types of network elements. In this context, a network that supports Differentiated Services (Diffserv) may be viewed as a network element in the total end-to-end path. This document describes a framework by which Integrated Services may be supported over Diffserv networks.

470 citations

01 Aug 2006
TL;DR: This paper summarizes the recommended correlation between service classes and their usage, with references to their corresponding recommended Differentiated Service Code Points (DSCP), traffic conditioners, Per-Hop Behaviors (PHB) and Active Queue Management mechanism.
Abstract: This paper summarizes the recommended correlation between service classes and their usage, with references to their corresponding recommended Differentiated Service Code Points (DSCP), traffic conditioners, Per-Hop Behaviors (PHB) and Active Queue Management (AQM) mechanism. There is no intrinsic requirement that particular DSCPs, traffic conditioner PHBs and AQM be used for a certain service class, but as a policy it is useful that they be applied consistently across the network.

328 citations


Cited by
More filters
Journal ArticleDOI
01 Aug 2001
TL;DR: The authors present an extensible and open Grid architecture, in which protocols, services, application programming interfaces, and software development kits are categorized according to their roles in enabling resource sharing.
Abstract: "Grid" computing has emerged as an important new field, distinguished from conventional distributed computing by its focus on large-scale resource sharing, innovative applications, and, in some cases, high performance orientation. In this article, the authors define this new field. First, they review the "Grid problem," which is defined as flexible, secure, coordinated resource sharing among dynamic collections of individuals, institutions, and resources--what is referred to as virtual organizations. In such settings, unique authentication, authorization, resource access, resource discovery, and other challenges are encountered. It is this class of problem that is addressed by Grid technologies. Next, the authors present an extensible and open Grid architecture, in which protocols, services, application programming interfaces, and software development kits are categorized according to their roles in enabling resource sharing. The authors describe requirements that they believe any such mechanisms must satisfy and discuss the importance of defining a compact set of intergrid protocols to enable interoperability among different Grid systems. Finally, the authors discuss how Grid technologies relate to other contemporary technologies, including enterprise integration, application service provider, storage service provider, and peer-to-peer computing. They maintain that Grid concepts and technologies complement and have much to contribute to these other approaches.

6,716 citations

01 Oct 2003
TL;DR: The Optimized Link State Routing protocol is an optimization of the classical link state algorithm tailored to the requirements of a mobile wireless LAN and provides optimal routes (in terms of number of hops).
Abstract: This document describes the Optimized Link State Routing (OLSR) protocol for mobile ad hoc networks. The protocol is an optimization of the classical link state algorithm tailored to the requirements of a mobile wireless LAN. The key concept used in the protocol is that of multipoint relays (MPRs). MPRs are selected nodes which forward broadcast messages during the flooding process. This technique substantially reduces the message overhead as compared to a classical flooding mechanism, where every node retransmits each message when it receives the first copy of the message. In OLSR, link state information is generated only by nodes elected as MPRs. Thus, a second optimization is achieved by minimizing the number of control messages flooded in the network. As a third optimization, an MPR node may chose to report only links between itself and its MPR selectors. Hence, as contrary to the classic link state algorithm, partial link state information is distributed in the network. This information is then used for route calculation. OLSR provides optimal routes (in terms of number of hops). The protocol is particularly suitable for large and dense networks as the technique of MPRs works well in this context.

5,442 citations

Posted Content
TL;DR: This article reviews the "Grid problem," and presents an extensible and open Grid architecture, in which protocols, services, application programming interfaces, and software development kits are categorized according to their roles in enabling resource sharing.
Abstract: "Grid" computing has emerged as an important new field, distinguished from conventional distributed computing by its focus on large-scale resource sharing, innovative applications, and, in some cases, high-performance orientation. In this article, we define this new field. First, we review the "Grid problem," which we define as flexible, secure, coordinated resource sharing among dynamic collections of individuals, institutions, and resources-what we refer to as virtual organizations. In such settings, we encounter unique authentication, authorization, resource access, resource discovery, and other challenges. It is this class of problem that is addressed by Grid technologies. Next, we present an extensible and open Grid architecture, in which protocols, services, application programming interfaces, and software development kits are categorized according to their roles in enabling resource sharing. We describe requirements that we believe any such mechanisms must satisfy, and we discuss the central role played by the intergrid protocols that enable interoperability among different Grid systems. Finally, we discuss how Grid technologies relate to other contemporary technologies, including enterprise integration, application service provider, storage service provider, and peer-to-peer computing. We maintain that Grid concepts and technologies complement and have much to contribute to these other approaches.

3,595 citations

Journal ArticleDOI
TL;DR: On conventional PC hardware, the Click IP router achieves a maximum loss-free forwarding rate of 333,000 64-byte packets per second, demonstrating that Click's modular and flexible architecture is compatible with good performance.
Abstract: Clicks is a new software architecture for building flexible and configurable routers. A Click router is assembled from packet processing modules called elements. Individual elements implement simple router functions like packet classification, queuing, scheduling, and interfacing with network devices. A router configurable is a directed graph with elements at the vertices; packets flow along the edges of the graph. Several features make individual elements more powerful and complex configurations easier to write, including pull connections, which model packet flow drivn by transmitting hardware devices, and flow-based router context, which helps an element locate other interesting elements. Click configurations are modular and easy to extend. A standards-compliant Click IP router has 16 elements on its forwarding path; some of its elements are also useful in Ethernet switches and IP tunnelling configurations. Extending the IP router to support dropping policies, fairness among flows, or Differentiated Services simply requires adding a couple of element at the right place. On conventional PC hardware, the Click IP router achieves a maximum loss-free forwarding rate of 333,000 64-byte packets per second, demonstrating that Click's modular and flexible architecture is compatible with good performance.

2,595 citations

01 Dec 1998
TL;DR: Differentiated services enhancements to the Internet protocol are intended to enable scalable service discrimination in the Internet without the need for per-flow state and signaling at every hop.
Abstract: Differentiated services enhancements to the Internet protocol are intended to enable scalable service discrimination in the Internet without the need for per-flow state and signaling at every hop. A variety of services may be built from a small, well-defined set of building blocks which are deployed in network nodes. The services may be either end-to-end or intra-domain; they include both those that can satisfy quantitative performance requirements (e.g., peak bandwidth) and those based on relative performance (e.g., "class" differentiation). Services can be constructed by a combination of:

1,850 citations