scispace - formally typeset
Search or ask a question
Author

F. Camera

Bio: F. Camera is an academic researcher from University of Milan. The author has contributed to research in topics: Neutron & Dipole. The author has an hindex of 33, co-authored 370 publications receiving 5093 citations. Previous affiliations of F. Camera include Istituto Nazionale di Fisica Nucleare.
Topics: Neutron, Dipole, Gamma ray, AGATA, Scintillator


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors examined the results of laboratory experiments that have provided initial constraints on the nuclear symmetry energy and on its density dependence at and somewhat below normal nuclear matter density.
Abstract: The symmetry energy contribution to the nuclear equation of state impacts various phenomena in nuclear astrophysics, nuclear structure, and nuclear reactions. Its determination is a key objective of contemporary nuclear physics, with consequences for the understanding of dense matter within neutron stars. We examine the results of laboratory experiments that have provided initial constraints on the nuclear symmetry energy and on its density dependence at and somewhat below normal nuclear matter density. Even though some of these constraints have been derived from properties of nuclei while others have been derived from the nuclear response to electroweak and hadronic probes, within experimental uncertainties-they are consistent with each other. We also examine the most frequently used theoretical models that predict the symmetry energy and its slope parameter. By comparing existing constraints on the symmetry pressure to theories, we demonstrate how contributions of three-body forces, which are essential ingredients in neutron matter models, can be determined.

535 citations

Journal ArticleDOI
Serkan Akkoyun1, A. Algora2, B. Alikhani3, F. Ameil  +375 moreInstitutions (40)
TL;DR: The Advanced GAmma Tracking Array (AGATA) as discussed by the authors is a European project to develop and operate the next generation gamma-ray spectrometer, which is based on the technique of energy tracking in electrically segmented high-purity germanium crystals.
Abstract: The Advanced GAmma Tracking Array (AGATA) is a European project to develop and operate the next generation gamma-ray spectrometer. AGATA is based on the technique of gamma-ray energy tracking in electrically segmented high-purity germanium crystals. This technique requires the accurate determination of the energy, time and position of every interaction as a gamma ray deposits its energy within the detector volume. Reconstruction of the full interaction path results in a detector with very high efficiency and excellent spectral response. The realisation of gamma-ray tracking and AGATA is a result of many technical advances. These include the development of encapsulated highly segmented germanium detectors assembled in a triple cluster detector cryostat, an electronics system with fast digital sampling and a data acquisition system to process the data at a high rate. The full characterisation of the crystals was measured and compared with detector-response simulations. This enabled pulse-shape analysis algorithms, to extract energy, time and position, to be employed. In addition, tracking algorithms for event reconstruction were developed. The first phase of AGATA is now complete and operational in its first physics campaign. In the future AGATA will be moved between laboratories in Europe and operated in a series of campaigns to take advantage of the different beams and facilities available to maximise its science output. The paper reviews all the achievements made in the AGATA project including all the necessary infrastructure to operate and support the spectrometer.

351 citations

Journal ArticleDOI
TL;DR: In this paper, the relationship between the nuclear symmetry energy, the neutron skins, and the percentage of energy-weighted sum rule (EWSR) exhausted by the pygmy dipole resonance was investigated by using different random phase approximation (RPA) models based on a representative set of Skyrme effective forces plus meson exchange effective Lagrangians.
Abstract: Correlations between the behavior of the nuclear symmetry energy, the neutron skins, and the percentage of energy-weighted sum rule (EWSR) exhausted by the pygmy dipole resonance (PDR) in $^{68}\mathrm{Ni}$ and $^{132}\mathrm{Sn}$ are investigated by using different random phase approximation (RPA) models for the dipole response, based on a representative set of Skyrme effective forces plus meson-exchange effective Lagrangians. A comparison with the experimental data has allowed us to constrain the value of the derivative of the symmetry energy at saturation. The neutron skin radius is deduced under this constraint.

201 citations

Journal ArticleDOI
TL;DR: The gamma decay from Coulomb excitation of 68Ni at 600 MeV/nucleon on a Au target was measured using the RISING setup at the fragment separator of GSI, showing a peak centered at approximately 11 MeV, whose intensity can be explained in terms of an enhanced strength of the dipole response function (pygmy resonance).
Abstract: The $\ensuremath{\gamma}$ decay from Coulomb excitation of $^{68}\mathrm{Ni}$ at $600\text{ }\text{ }\mathrm{MeV}/\mathrm{\text{nucleon}}$ on a Au target was measured using the RISING setup at the fragment separator of GSI. The $^{68}\mathrm{Ni}$ beam was produced by a fragmentation reaction of $^{86}\mathrm{Kr}$ at $900\text{ }\text{ }\mathrm{MeV}/\mathrm{\text{nucleon}}$ on a $^{9}\mathrm{Be}$ target and selected by the fragment separator. The $\ensuremath{\gamma}$ rays produced at the Au target were measured with HPGe detectors at forward angles and with ${\mathrm{BaF}}_{2}$ scintillators at backward angles. The measured spectra show a peak centered at approximately 11 MeV, whose intensity can be explained in terms of an enhanced strength of the dipole response function (pygmy resonance). Such pygmy structure has been predicted in this unstable neutron-rich nucleus by theory.

171 citations

Journal ArticleDOI
TL;DR: It is concluded that the acquisition of prompt gamma profiles for in vivo range verification of proton beam with the developed gamma camera and a slit collimator is feasible in clinical conditions.
Abstract: In this work, we present experimental results of a prompt gamma camera for real-time proton beam range verification. The detection system features a pixelated Cerium doped lutetium based scintillation crystal, coupled to Silicon PhotoMultiplier arrays, read out by dedicated electronics. The prompt gamma camera uses a knife-edge slit collimator to produce a 1D projection of the beam path in the target on the scintillation detector. We designed the detector to provide high counting statistics and high photo-detection efficiency for prompt gamma rays of several MeV. The slit design favours the counting statistics and could be advantageous in terms of simplicity, reduced cost and limited footprint. We present the description of the realized gamma camera, as well as the results of the characterization of the camera itself in terms of imaging performance. We also present the results of experiments in which a polymethyl methacrylate phantom was irradiated with proton pencil beams in a proton therapy center. A tungsten slit collimator was used and prompt gamma rays were acquired in the 3–6 MeV energy range. The acquisitions were performed with the beam operated at 100 MeV, 160 MeV and 230 MeV, with beam currents at the nozzle exit of several nA. Measured prompt gamma profiles are consistent with the simulations and we reached a precision (2σ) in shift retrieval of 4 mm with 0.5 × 108, 1.4 × 108 and 3.4 × 108 protons at 100, 160 and 230 MeV, respectively. We conclude that the acquisition of prompt gamma profiles for in vivo range verification of proton beam with the developed gamma camera and a slit collimator is feasible in clinical conditions. The compact design of the camera allows its integration in a proton therapy treatment room and further studies will be undertaken to validate the use of this detection system during treatment of real patients.

130 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1235 moreInstitutions (132)
TL;DR: This analysis expands upon previous analyses by working under the hypothesis that both bodies were neutron stars that are described by the same equation of state and have spins within the range observed in Galactic binary neutron stars.
Abstract: On 17 August 2017, the LIGO and Virgo observatories made the first direct detection of gravitational waves from the coalescence of a neutron star binary system. The detection of this gravitational-wave signal, GW170817, offers a novel opportunity to directly probe the properties of matter at the extreme conditions found in the interior of these stars. The initial, minimal-assumption analysis of the LIGO and Virgo data placed constraints on the tidal effects of the coalescing bodies, which were then translated to constraints on neutron star radii. Here, we expand upon previous analyses by working under the hypothesis that both bodies were neutron stars that are described by the same equation of state and have spins within the range observed in Galactic binary neutron stars. Our analysis employs two methods: the use of equation-of-state-insensitive relations between various macroscopic properties of the neutron stars and the use of an efficient parametrization of the defining function pðρÞ of the equation of state itself. From the LIGO and Virgo data alone and the first method, we measure the two neutron star radii as R1 ¼ 10.8 þ2.0 −1.7 km for the heavier star and R2 ¼ 10.7 þ2.1 −1.5 km for the lighter star at the 90% credible level. If we additionally require that the equation of state supports neutron stars with masses larger than 1.97 M⊙ as required from electromagnetic observations and employ the equation-of-state parametrization, we further constrain R1 ¼ 11.9 þ1.4 −1.4 km and R2 ¼ 11.9 þ1.4 −1.4 km at the 90% credible level. Finally, we obtain constraints on pðρÞ at supranuclear densities, with pressure at twice nuclear saturation density measured at 3.5 þ2.7 −1.7 × 1034 dyn cm−2 at the 90% level.

1,595 citations

Journal ArticleDOI
01 Jan 2017
TL;DR: AGILE as discussed by the authors is an ASI space mission developed with programmatic support by INAF and INFN, which includes data gathered with the 1 meter Swope and 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.
Abstract: This program was supported by the the Kavli Foundation, Danish National Research Foundation, the Niels Bohr International Academy, and the DARK Cosmology Centre. The UCSC group is supported in part by NSF grant AST-1518052, the Gordon & Betty Moore Foundation, the Heising-Simons Foundation, generous donations from many individuals through a UCSC Giving Day grant, and from fellowships from the Alfred P. Sloan Foundation (R.J.F.), the David and Lucile Packard Foundation (R.J.F. and E.R.) and the Niels Bohr Professorship from the DNRF (E.R.). AMB acknowledges support from a UCMEXUS-CONACYT Doctoral Fellowship. Support for this work was provided by NASA through Hubble Fellowship grants HST-HF-51348.001 (B.J.S.) and HST-HF-51373.001 (M.R.D.) awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-26555. This paper includes data gathered with the 1 meter Swope and 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.r (AGILE) The AGILE Team thanks the ASI management, the technical staff at the ASI Malindi ground station, the technical support team at the ASI Space Science Data Center, and the Fucino AGILE Mission Operation Center. AGILE is an ASI space mission developed with programmatic support by INAF and INFN. We acknowledge partial support through the ASI grant No. I/028/12/2. We also thank INAF, Italian Institute of Astrophysics, and ASI, Italian Space Agency.r (ANTARES) The ANTARES Collaboration acknowledges the financial support of: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'energie atomique et aux energies alternatives (CEA), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), IdEx program and UnivEarthS Labex program at Sorbonne Paris Cite (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02), Labex OCEVU (ANR-11-LABX-0060) and the A*MIDEX project (ANR-11-IDEX-0001-02), Region Ile-de-France (DIM-ACAV), Region Alsace (contrat CPER), Region Provence-Alpes-Cite d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; National Authority for Scientific Research (ANCS), Romania;...

1,270 citations

Journal ArticleDOI
TL;DR: The Reference Input Parameter Library (RIPL-3) as mentioned in this paper is a library of validated nuclear-model input parameters, referred to as the RIPL-2 library, which has been used extensively in the development and use of nuclear reaction modelling.

1,013 citations