scispace - formally typeset
Search or ask a question
Author

F. Chris Minion

Bio: F. Chris Minion is an academic researcher from Iowa State University. The author has contributed to research in topics: Mycoplasma hyopneumoniae & Porcine enzootic pneumonia. The author has an hindex of 16, co-authored 17 publications receiving 1271 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The complete genome sequence of Mycoplasma hyopneumoniae, an important member of the porcine respiratory disease complex, is presented, finding few genes with tandem repeat sequences that could be involved in phase switching or antigenic variation and it is not clear how M. hyop pneumoniae evades the immune response and establishes a chronic infection.
Abstract: We present the complete genome sequence of Mycoplasma hyopneumoniae, an important member of the porcine respiratory disease complex. The genome is composed of 892,758 bp and has an average G+C content of 28.6 mol%. There are 692 predicted protein coding sequences, the average protein size is 388 amino acids, and the mean coding density is 91%. Functions have been assigned to 304 (44%) of the predicted protein coding sequences, while 261 (38%) of the proteins are conserved hypothetical proteins and 127 (18%) are unique hypothetical proteins. There is a single 16S-23S rRNA operon, and there are 30 tRNA coding sequences. The cilium adhesin gene has six paralogs in the genome, only one of which contains the cilium binding site. The companion gene, P102, also has six paralogs. Gene families constitute 26.3% of the total coding sequences, and the largest family is the 34-member ABC transporter family. Protein secretion occurs through a truncated pathway consisting of SecA, SecY, SecD, PrsA, DnaK, Tig, and LepA. Some highly conserved eubacterial proteins, such as GroEL and GroES, are notably absent. The DnaK-DnaJ-GrpR complex is intact, providing the only control over protein folding. There are several proteases that might serve as virulence factors, and there are 53 coding sequences with prokaryotic lipoprotein lipid attachment sites. Unlike other mycoplasmas, M. hyopneumoniae contains few genes with tandem repeat sequences that could be involved in phase switching or antigenic variation. Thus, it is not clear how M. hyopneumoniae evades the immune response and establishes a chronic infection.

279 citations

Journal ArticleDOI
TL;DR: It is shown that the cilium adhesin is proteolytically processed on the surface, with processing is complex, with cleavage occurring at different frequencies within multiple sites, and is strain specific.
Abstract: Mycoplasma hyopneumoniae is an economically significant swine pathogen that colonizes the respiratory ciliated epithelial cells. Cilium adherence is mediated by P97, a surface protein containing a repeating element (R1) that is responsible for binding. Here, we show that the cilium adhesin is proteolytically processed on the surface. Proteomic analysis of strain J proteins identified cleavage products of 22, 28, 66, and 94 kDa. N-terminal sequencing showed that the 66- and 94-kDa proteins possessed identical N termini and that the 66-kDa variant was generated by cleavage of the 28-kDa product from the C terminus. The 22-kDa product represented the N-terminal 195 amino acids of the cilium adhesin preprotein, confirming that the hydrophobic leader signal sequence is not cleaved during translocation across the membrane. Comparative studies of M. hyopneumoniae strain 232 showed that the major cleavage products of the cilium adhesin are similar, although P22 and P28 appear to be processed further in strain 232. Immunoblotting studies using antisera raised against peptide sequences within P22 and P66/P94 indicate that processing is complex, with cleavage occurring at different frequencies within multiple sites, and is strain specific. Immunogold electron microscopy showed that fragments containing the cilium-binding site remained associated with the cell surface whereas cleavage products not containing the R1 element were located elsewhere. Not all secreted proteins undergo multiple cleavage, however, as evidenced by the analysis of the P102 gene product. The ability of M. hyopneumoniae to selectively cleave its secreted proteins provides this pathogen with a remarkable capacity to alter its surface architecture.

117 citations

Journal ArticleDOI
TL;DR: Two new real-time PCR assays that are specific and capable of detecting all of the M. hyopneumoniae isolates used in this study were developed were developed.
Abstract: Mycoplasma hyopneumoniae is an important cause of pneumonia in pigs around the world, but confirming its presence in (or absence from) pigs can be difficult. Culture for diagnosis is impractical, and seroconversion is often delayed after natural infection, limiting the use of serology. Numerous PCR assays for the detection of M. hyopneumoniae have been developed, targeting several different genes. Recently, genetic diversity among strains of M. hyopneumoniae was demonstrated. The effect of this diversity on the accuracy and sensitivity of the M. hyopneumoniae PCR assays could result in false-negative results in current PCR tests. In this study, a panel of isolates of M. hyopneumoniae, M. flocculare, M. hyorhinis, and M. hyosynoviae were tested with a number of M. hyopneumoniae-specific PCR assays. Some M. hyopneumoniae PCR assays tested did not detect all isolates of M. hyopneumoniae. To increase the efficiency of PCR testing, two new real-time PCR assays that are specific and capable of detecting all of the M. hyopneumoniae isolates used in this study were developed.

87 citations

Journal ArticleDOI
TL;DR: The nested PCR developed for this study was found to be a highly sensitive and specific diagnostic tool for M. hyopneumoniae, but the enhanced sensitivity may be unnecessary if the proper sites are sampled.
Abstract: A number of polymerase chain reaction (PCR)-based diagnostic tests have been developed for Mycoplasma hyopneumoniae, including one from this research group. This report presents further development, optimization, and standardization of a nested PCR test. Detection sensitivity was 1 fg of M. hyopneumoniae chromosomal DNA (approximately 1 organism). This exceeded the sensitivity of or compared favorably with other published PCR tests. Polymerase chain reaction primers to porcine beta2-microglobulin were included as internal controls for amplifiable chromosomal DNA from porcine samples. To standardize the test, a number of samples from experimentally infected pigs, including nasal, tonsil, tracheobronchial swabs, lung tissue, bronchial alveolar lavage (BAL) fluid, and tracheobronchial brush samples, were examined by PCR. Samples obtained from BAL fluid and tracheobronchial sites were most predictive of infection, whereas nasal swabs and lung tissue were not reliable indicators of experimentally induced infection. In conclusion, the nested PCR developed for this study was found to be a highly sensitive and specific diagnostic tool for M. hyopneumoniae, but the enhanced sensitivity may be unnecessary if the proper sites are sampled.

85 citations

Journal ArticleDOI
TL;DR: These studies offer an approach by which a thorough understanding of the mechanisms governing antigenic instability can be elucidated in order to optimize the in vivo performance of biodegradable delivery devices as protein carriers and/or vaccine adjuvants.

81 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review summarizes the most recent advances in the field over the past 4 years, specifically highlighting new and interesting discoveries in tissue engineering and drug delivery applications.
Abstract: Utilization of polymers as biomaterials has greatly impacted the advancement of modern medicine. Specifically, polymeric biomaterials that are biodegradable provide the significant advantage of being able to be broken down and removed after they have served their function. Applications are wide ranging with degradable polymers being used clinically as surgical sutures and implants. In order to fit functional demand, materials with desired physical, chemical, biological, biomechanical and degradation properties must be selected. Fortunately, a wide range of natural and synthetic degradable polymers has been investigated for biomedical applications with novel materials constantly being developed to meet new challenges. This review summarizes the most recent advances in the field over the past 4 years, specifically highlighting new and interesting discoveries in tissue engineering and drug delivery applications.

1,712 citations

Journal ArticleDOI
TL;DR: There is now solid genetic support for the hypothesis that mycoplasmas have evolved as a branch of gram-positive bacteria by a process of reductive evolution and developed various genetic systems providing a highly plastic set of variable surface proteins to evade the host immune system.
Abstract: The recent sequencing of the entire genomes of Mycoplasma genitalium and M. pneumoniae has attracted considerable attention to the molecular biology of mycoplasmas, the smallest self-replicating organisms. It appears that we are now much closer to the goal of defining, in molecular terms, the entire machinery of a self-replicating cell. Comparative genomics based on comparison of the genomic makeup of mycoplasmal genomes with those of other bacteria, has opened new ways of looking at the evolutionary history of the mycoplasmas. There is now solid genetic support for the hypothesis that mycoplasmas have evolved as a branch of gram-positive bacteria by a process of reductive evolution. During this process, the mycoplasmas lost considerable portions of their ancestors’ chromosomes but retained the genes essential for life. Thus, the mycoplasmal genomes carry a high percentage of conserved genes, greatly facilitating gene annotation. The significant genome compaction that occurred in mycoplasmas was made possible by adopting a parasitic mode of life. The supply of nutrients from their hosts apparently enabled mycoplasmas to lose, during evolution, the genes for many assimilative processes. During their evolution and adaptation to a parasitic mode of life, the mycoplasmas have developed various genetic systems providing a highly plastic set of variable surface proteins to evade the host immune system. The uniqueness of the mycoplasmal systems is manifested by the presence of highly mutable modules combined with an ability to expand the antigenic repertoire by generating structural alternatives, all compressed into limited genomic sequences. In the absence of a cell wall and a periplasmic space, the majority of surface variable antigens in mycoplasmas are lipoproteins. Apart from providing specific antimycoplasmal defense, the host immune system is also involved in the development of pathogenic lesions and exacerbation of mycoplasma induced diseases. Mycoplasmas are able to stimulate as well as suppress lymphocytes in a nonspecific, polyclonal manner, both in vitro and in vivo. As well as to affecting various subsets of lymphocytes, mycoplasmas and mycoplasma-derived cell components modulate the activities of monocytes/macrophages and NK cells and trigger the production of a wide variety of up-regulating and down-regulating cytokines and chemokines. Mycoplasma-mediated secretion of proinflammatory cytokines, such as tumor necrosis factor alpha, interleukin-1 (IL-1), and IL-6, by macrophages and of up-regulating cytokines by mitogenically stimulated lymphocytes plays a major role in mycoplasma-induced immune system modulation and inflammatory responses.

1,679 citations

Journal ArticleDOI
TL;DR: The human lung selenoprotein failed to react with anti-rat liver TR polyclonal antibody in immunoblot assays, suggesting the selenocysteine-containing TR from the adenocarcinoma cells may be a variant form distinct from rat liver TR.
Abstract: We report the isolation and characterization of a new selenoprotein from a human lung adenocarcinoma cell line, NCI-H441. Cells were grown in RPMI-1640 medium containing 10% (vol/vol) fetal bovine serum and 0.1 microM [75Se]selenite. A 75Se-labeled protein was isolated from sonic extracts of the cells by chromatography on DE-23, phenyl-Sepharose, heparin-agarose, and butyl-Sepharose. The protein, a homodimer of 57-kDa subunits, was shown to contain selenium in the form of selenocysteine; hydrolysis of the protein alkylated with either iodoacetate or 3-bromopropionate yielded Se-carboxymethyl-selenocysteine or Se-carboxyethyl-selenocysteine, respectively. The selenoprotein showed two isoelectric points at pH 5.2 and pH 5.3. It was distinguished from selenoprotein P by N-glycosidase assay and by the periodate-dansylhydrazine test, which indicated no detectable amounts of glycosyl groups on the protein. The selenoprotein contains FAD as a prosthetic group and catalyzes NADPH-dependent reduction of 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), and reduction of insulin in the presence of thioredoxin (Trx). The specific activity was determined to be 31 units/mg by DTNB assay. Apparent Km values for DTNB, Escherichia coli Trx, and rat Trx were 116, 34, and 3.7 microM, respectively. DTNB reduction was inhibited by 0.2 mM arsenite. Although the subunit composition and catalytic properties are similar to those of mammalian thioredoxin reductase (TR), the human lung selenoprotein failed to react with anti-rat liver TR polyclonal antibody in immunoblot assays. The selenocysteine-containing TR from the adenocarcinoma cells may be a variant form distinct from rat liver TR.

522 citations

Journal ArticleDOI
TL;DR: The main effects of vaccination include less clinical symptoms, lung lesions and medication use, and improved performance, however, bacterins provide only partial protection and do not prevent colonization of the organism.

370 citations

Journal ArticleDOI
TL;DR: The applications of genotyping methods to the study of bacterial strain diversity are described and compared and the progresses allowed by the availability of genomic sequences are investigated.
Abstract: Bacterial strain typing, or identifying bacteria at the strain level, is particularly important for diagnosis, treatment, and epidemiological surveillance of bacterial infections. This is especially the case for bacteria exhibiting high levels of antibiotic resistance or virulence, and those involved in nosocomial or pandemic infections. Strain typing also has applications in studying bacterial population dynamics. Over the last two decades, molecular methods have progressively replaced phenotypic assays to type bacterial strains. In this article, we review the current bacterial genotyping methods and classify them into three main categories: (1) DNA banding pattern-based methods, which classify bacteria according to the size of fragments generated by amplification and/or enzymatic digestion of genomic DNA, (2) DNA sequencing-based methods, which study the polymorphism of DNA sequences, and (3) DNA hybridization-based methods using nucleotidic probes. We described and compared the applications of genotyping methods to the study of bacterial strain diversity. We also discussed the selection of appropriate genotyping methods and the challenges of bacterial strain typing, described the current trends of genotyping methods, and investigated the progresses allowed by the availability of genomic sequences.

321 citations