scispace - formally typeset
Search or ask a question
Author

F. Coti Zelati

Bio: F. Coti Zelati is an academic researcher from Spanish National Research Council. The author has contributed to research in topics: Pulsar & Neutron star. The author has an hindex of 20, co-authored 65 publications receiving 1410 citations. Previous affiliations of F. Coti Zelati include Brera Astronomical Observatory & University of Amsterdam.

Papers published on a yearly basis

Papers
More filters
Proceedings ArticleDOI
P. Soffitta, R. Bellazzini1, Enrico Bozzo2, Vadim Burwitz  +418 moreInstitutions (132)
TL;DR: The X-ray Imaging Polarimetry Explorer (XIPE) as discussed by the authors is a mission dedicated to Xray Astronomy which is in a competitive phase A as fourth medium size mission of ESA (M4).
Abstract: XIPE, the X-ray Imaging Polarimetry Explorer, is a mission dedicated to X-ray Astronomy. At the time of writing XIPE is in a competitive phase A as fourth medium size mission of ESA (M4). It promises to reopen the polarimetry window in high energy Astrophysics after more than 4 decades thanks to a detector that efficiently exploits the photoelectric effect and to X-ray optics with large effective area. XIPE uniqueness is time-spectrally-spatially- resolved X-ray polarimetry as a breakthrough in high energy astrophysics and fundamental physics. Indeed the payload consists of three Gas Pixel Detectors at the focus of three X-ray optics with a total effective area larger than one XMM mirror but with a low weight. The payload is compatible with the fairing of the Vega launcher. XIPE is designed as an observatory for X-ray astronomers with 75 % of the time dedicated to a Guest Observer competitive program and it is organized as a consortium across Europe with main contributions from Italy, Germany, Spain, United Kingdom, Poland, Sweden.

185 citations

Proceedings ArticleDOI
Shuang-Nan Zhang, Marco Feroci1, Andrea Santangelo2, Yongwei Dong  +181 moreInstitutions (41)
TL;DR: eXTP as discussed by the authors is a science mission designed to study the state of matter under extreme conditions of density, gravity and magnetism, which carries a unique and unprecedented suite of state-of-the-art scientific instruments enabling for the first time ever the simultaneous spectral-timing-polarimetry studies of cosmic sources in the energy range from 0.5-30 keV.
Abstract: eXTP is a science mission designed to study the state of matter under extreme conditions of density, gravity and magnetism. Primary goals are the determination of the equation of state of matter at supra-nuclear density, the measurement of QED effects in highly magnetized star, and the study of accretion in the strong-field regime of gravity. Primary targets include isolated and binary neutron stars, strong magnetic field systems like magnetars, and stellar-mass and supermassive black holes. The mission carries a unique and unprecedented suite of state-of-the-art scientific instruments enabling for the first time ever the simultaneous spectral-timing-polarimetry studies of cosmic sources in the energy range from 0.5-30 keV (and beyond). Key elements of the payload are: the Spectroscopic Focusing Array (SFA) - a set of 11 X-ray optics for a total effective area of similar to 0.9 m(2) and 0.6 m(2) at 2 keV and 6 keV respectively, equipped with Silicon Drift Detectors offering < 180 eV spectral resolution; the Large Area Detector (LAD) - a deployable set of 640 Silicon Drift Detectors, for a total effective area of similar to 3.4 m(2), between 6 and 10 keV, and spectral resolution better than 250 eV; the Polarimetry Focusing Array (PFA) - a set of 2 X-ray telescope, for a total effective area of 250 cm(2) at 2 keV, equipped with imaging gas pixel photoelectric polarimeters; the Wide Field Monitor (WFM) - a set of 3 coded mask wide field units, equipped with position-sensitive Silicon Drift Detectors, each covering a 90 degrees x 90 degrees field of view. The eXTP international consortium includes major institutions of the Chinese Academy of Sciences and Universities in China, as well as major institutions in several European countries and the United States. The predecessor of eXTP, the XTP mission concept, has been selected and funded as one of the so-called background missions in the Strategic Priority Space Science Program of the Chinese Academy of Sciences since 2011. The strong European participation has significantly enhanced the scientific capabilities of eXTP. The planned launch date of the mission is earlier than 2025.

184 citations

Proceedings ArticleDOI
TL;DR: eXTP as discussed by the authors is a science mission designed to study the state of matter under extreme conditions of density, gravity and magnetism, which carries a unique and unprecedented suite of state-of-the-art scientific instruments enabling for the first time ever the simultaneous spectral-timing-polarimetry studies of cosmic sources in the energy range from 0.5-30 keV.
Abstract: eXTP is a science mission designed to study the state of matter under extreme conditions of density, gravity and magnetism. Primary targets include isolated and binary neutron stars, strong magnetic field systems like magnetars, and stellar-mass and supermassive black holes. The mission carries a unique and unprecedented suite of state-of-the-art scientific instruments enabling for the first time ever the simultaneous spectral-timing-polarimetry studies of cosmic sources in the energy range from 0.5-30 keV (and beyond). Key elements of the payload are: the Spectroscopic Focusing Array (SFA) - a set of 11 X-ray optics for a total effective area of about 0.9 m^2 and 0.6 m^2 at 2 keV and 6 keV respectively, equipped with Silicon Drift Detectors offering <180 eV spectral resolution; the Large Area Detector (LAD) - a deployable set of 640 Silicon Drift Detectors, for a total effective area of about 3.4 m^2, between 6 and 10 keV, and spectral resolution <250 eV; the Polarimetry Focusing Array (PFA) - a set of 2 X-ray telescope, for a total effective area of 250 cm^2 at 2 keV, equipped with imaging gas pixel photoelectric polarimeters; the Wide Field Monitor (WFM) - a set of 3 coded mask wide field units, equipped with position-sensitive Silicon Drift Detectors, each covering a 90 degrees x 90 degrees FoV. The eXTP international consortium includes mostly major institutions of the Chinese Academy of Sciences and Universities in China, as well as major institutions in several European countries and the United States. The predecessor of eXTP, the XTP mission concept, has been selected and funded as one of the so-called background missions in the Strategic Priority Space Science Program of the Chinese Academy of Sciences since 2011. The strong European participation has significantly enhanced the scientific capabilities of eXTP. The planned launch date of the mission is earlier than 2025.

122 citations

Journal ArticleDOI
TL;DR: This work is partially supported by the European COST ActionMP1304 (NewCOMPSTAR) and the NWO Vidi Grant, and by grants AYA2012-39303 and SGR2014-1073.
Abstract: NR is supported by an NWO Vidi Grant, and by grants AYA2012-39303 and SGR2014-1073. This work is partially supported by the European COST ActionMP1304 (NewCOMPSTAR).

122 citations

Journal ArticleDOI
TL;DR: In this article, Chandra, Nuclear Spectroscopic Telescope Array, and Swift (BAT and XRT) observations of RCW 103 during its 2016 outburst peak were used to study the properties of this magnetar-like burst.
Abstract: The 6.67 hr periodicity and the variable X-ray flux of the central compact object (CCO) at the center of the supernova remnant RCW 103, named 1E 161348–5055, have been always difficult to interpret within the standard scenarios of an isolated neutron star (NS) or a binary system. On 2016 June 22, the Burst Alert Telescope (BAT) on board Swift detected a magnetar-like short X-ray burst from the direction of 1E 161348–5055, also coincident with a large long-term X-ray outburst. Here, we report on Chandra, Nuclear Spectroscopic Telescope Array, and Swift (BAT and XRT) observations of this peculiar source during its 2016 outburst peak. In particular, we study the properties of this magnetar-like burst, we discover a hard X-ray tail in the CCO spectrum during outburst, and we study its long-term outburst history (from 1999 to 2016 July). We find the emission properties of 1E 161348–5055 consistent with it being a magnetar. However, in this scenario, the 6.67 hr periodicity can only be interpreted as the rotation period of this strongly magnetized NS, which therefore represents the slowest pulsar ever detected, by orders of magnitude. We briefly discuss the viable slow-down scenarios, favoring a picture involving a period of fall-back accretion after the supernova explosion, similarly to what is invoked (although in a different regime) to explain the "anti-magnetar" scenario for other CCOs.

83 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a new model for the distribution of free electrons in the Galaxy, the Magellanic Clouds, and the intergalactic medium (IGM) that can be used to estimate distances to real or simulated pulsars and fast radio bursts (FRBs) based on their dispersion measure (DM) was presented.
Abstract: We present a new model for the distribution of free electrons in the Galaxy, the Magellanic Clouds, and the intergalactic medium (IGM) that can be used to estimate distances to real or simulated pulsars and fast radio bursts (FRBs) based on their dispersion measure (DM). The Galactic model has an extended thick disk representing the so-called warm interstellar medium, a thin disk representing the Galactic molecular ring, spiral arms based on a recent fit to Galactic H II regions, a Galactic Center disk, and seven local features including the Gum Nebula, Galactic Loop I, and the Local Bubble. An offset of the Sun from the Galactic plane and a warp of the outer Galactic disk are included in the model. Parameters of the Galactic model are determined by fitting to 189 pulsars with independently determined distances and DMs. Simple models are used for the Magellanic Clouds and the IGM. Galactic model distances are within the uncertainty range for 86 of the 189 independently determined distances and within 20% of the nearest limit for a further 38 pulsars. We estimate that 95% of predicted Galactic pulsar distances will have a relative error of less than a factor of 0.9. The predictions of YMW16 are compared to those of the TC93 and NE2001 models showing that YMW16 performs significantly better on all measures. Timescales for pulse broadening due to interstellar scattering are estimated for (real or simulated) Galactic and Magellanic Cloud pulsars and FRBs.

801 citations

01 Dec 1998
TL;DR: The International Gamma-Ray Astrophysics Laboratory (INTEGRAL) as mentioned in this paper is dedicated to the fine spectroscopy (2.5 − 1.5 ) and fine imaging (angular resolution: 12 arcmin FWHM) of celestial gamma-ray sources in the energy range 15 − 10 − MeV with concurrent source monitoring in the X-ray ($3 − 35 ) and optical (V -band, 550 −nm) energy ranges.
Abstract: The ESA observatory INTEGRAL (International Gamma-Ray Astrophysics Laboratory) is dedicated to the fine spectroscopy (2.5 keV FWHM @ 1 MeV) and fine imaging (angular resolution: 12 arcmin FWHM) of celestial gamma-ray sources in the energy range 15 keV to 10 MeV with concurrent source monitoring in the X-ray ($3{-}35$ keV) and optical ( V -band, 550 nm) energy ranges. INTEGRAL carries two main gamma-ray instruments, the spectrometer SPI (Vedrenne et al. [CITE]) – optimized for the high-resolution gamma-ray line spectroscopy (20 keV–8 MeV), and the imager IBIS (Ubertini et al. [CITE]) – optimized for high-angular resolution imaging (15 keV–10 MeV). Two monitors, JEM-X (Lund et al. [CITE]) in the ($3{-}35$) keV X-ray band, and OMC (Mas-Hesse et al. [CITE]) in optical Johnson V -band complement the payload. The ground segment includes the Mission Operations Centre at ESOC, ESA and NASA ground stations, the Science Operations Centre at ESTEC and the Science Data Centre near Geneva. INTEGRAL was launched on 17 October 2002. The observing programme is well underway and sky exposure (until June 2003) reaches ~1800 ks in the Galactic plane. The prospects are excellent for the scientific community to observe the high energy sky using state-of-the-art gamma-ray imaging and spectroscopy. This paper presents a high-level overview of INTEGRAL.

726 citations

Journal ArticleDOI
01 Nov 2020-Nature
TL;DR: In this paper, the authors reported the detection of an extremely intense radio burst from the Galactic magnetar SGR 1935+2154 using the Canadian Hydrogen Intensity Mapping Experiment (CHIME) FRB project.
Abstract: Magnetars are highly magnetized young neutron stars that occasionally produce enormous bursts and flares of X-rays and gamma-rays. Of the approximately thirty magnetars currently known in our Galaxy and Magellanic Clouds, five have exhibited transient radio pulsations. Fast radio bursts (FRBs) are millisecond-duration bursts of radio waves arriving from cosmological distances. Some have been seen to repeat. A leading model for repeating FRBs is that they are extragalactic magnetars, powered by their intense magnetic fields. However, a challenge to this model has been that FRBs must have radio luminosities many orders of magnitude larger than those seen from known Galactic magnetars. Here we report the detection of an extremely intense radio burst from the Galactic magnetar SGR 1935+2154 using the Canadian Hydrogen Intensity Mapping Experiment (CHIME) FRB project. The fluence of this two-component bright radio burst and the estimated distance to SGR 1935+2154 together imply a 400-800 MHz burst energy of $\sim 3 \times 10^{34}$ erg, which is three orders of magnitude brighter than those of any radio-emitting magnetar detected thus far. Such a burst coming from a nearby galaxy would be indistinguishable from a typical FRB. This event thus bridges a large fraction of the radio energy gap between the population of Galactic magnetars and FRBs, strongly supporting the notion that magnetars are the origin of at least some FRBs.

407 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present an overview of AGN multi-wavelength properties with the aim of painting their "big picture" through observations in each electromagnetic band from radio to gamma-gamma -rays as well as AGN variability.
Abstract: Active galactic nuclei (AGN) are energetic astrophysical sources powered by accretion onto supermassive black holes in galaxies, and present unique observational signatures that cover the full electromagnetic spectrum over more than twenty orders of magnitude in frequency. The rich phenomenology of AGN has resulted in a large number of different “flavours” in the literature that now comprise a complex and confusing AGN “zoo”. It is increasingly clear that these classifications are only partially related to intrinsic differences between AGN and primarily reflect variations in a relatively small number of astrophysical parameters as well the method by which each class of AGN is selected. Taken together, observations in different electromagnetic bands as well as variations over time provide complementary windows on the physics of different sub-structures in the AGN. In this review, we present an overview of AGN multi-wavelength properties with the aim of painting their “big picture” through observations in each electromagnetic band from radio to $$\gamma $$ -rays as well as AGN variability. We address what we can learn from each observational method, the impact of selection effects, the physics behind the emission at each wavelength, and the potential for future studies. To conclude, we use these observations to piece together the basic architecture of AGN, discuss our current understanding of unification models, and highlight some open questions that present opportunities for future observational and theoretical progress.

384 citations