scispace - formally typeset
Search or ask a question
Author

F. Douglas Swesty

Bio: F. Douglas Swesty is an academic researcher from Stony Brook University. The author has contributed to research in topics: Neutron star & Gravitational collapse. The author has an hindex of 9, co-authored 21 publications receiving 2053 citations. Previous affiliations of F. Douglas Swesty include University of Illinois at Urbana–Champaign & National Center for Supercomputing Applications.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an equation of state for hot, dense matter is presented in a form that is sufficiently rapid to use directly in hydrodynamical simulations, for example, in stellar collapse calculations.

1,188 citations

Journal ArticleDOI
TL;DR: The choice of a biquintic Hermite polynomial as the interpolating function results in accurately reproducing the underlying Helmholtz free energy data in the table, and yields derivatives of the pressure, specific entropy, and specific internal energy which are smooth and continuous.
Abstract: An electron-positron equation of state based on table interpolation of the Helmholtz free energy is developed and analyzed. The interpolation scheme guarantees perfect thermodynamic consistency, independent of the interpolating function. The choice of a biquintic Hermite polynomial as the interpolating function results in accurately reproducing the underlying Helmholtz free energy data in the table, and yields derivatives of the pressure, specific entropy, and specific internal energy which are smooth and continuous. The execution speed—evaluated across several different machine architectures, compiler options, and modes of operation—suggests that the Helmholtz equation of state routine is faster than any of the five equation of state routines surveyed by Timmes & Arnett. When an optimal balance of accuracy, thermodynamic consistency, and speed is desirable then the tabular Helmholtz equation of state is an excellent choice, particularly for multidimensional models of stellar phenomena.

829 citations

Journal ArticleDOI
TL;DR: This paper has developed a new, two-dimensional, multigroup algorithm that can model neutrino-RHD flows in core-collapse supernovae, and uses an approach similar to the ZEUS family of algorithms, originally developed by Stone and Norman.
Abstract: It is now generally agreed that multidimensional, multigroup, neutrino-radiation hydrodynamics (RHD) is an indispensable element of any realistic model of stellar-core collapse, core-collapse supernovae, and proto-neutron star instabilities. We have developed a new, two-dimensional, multigroup algorithm that can model neutrino-RHD flows in core-collapse supernovae. Our algorithm uses an approach similar to the ZEUS family of algorithms, originally developed by Stone and Norman. However, this completely new implementation extends that previous work in three significant ways: first, we incorporate multispecies, multigroup RHD in a flux-limited-diffusion approximation. Our approach is capable of modeling pair-coupled neutrino-RHD, and includes effects of Pauli blocking in the collision integrals. Blocking gives rise to nonlinearities in the discretized radiation-transport equations, which we evolve implicitly in time. We employ parallelized Newton-Krylov methods to obtain a solution of these nonlinear, implicit equations. Our second major extension to the ZEUS algorithm is the inclusion of an electron conservation equation that describes the evolution of electron-number density in the hydrodynamic flow. This permits calculating deleptonization of a stellar core. Our third extension modifies the hydrodynamics algorithm to accommodate realistic, complex equations of state, including those having nonconvex behavior. In this paper, we present a description of our complete algorithm, giving sufficient details to allow others to implement, reproduce, and extend our work. Finite-differencing details are presented in appendices. We also discuss implementation of this algorithm on state-of-the-art, parallel-computing architectures. Finally, we present results of verification tests that demonstrate the numerical accuracy of this algorithm on diverse hydrodynamic, gravitational, radiation-transport, and RHD sample problems. We believe our methods to be of general use in a variety of model settings where radiation transport or RHD is important. Extension of this work to three spatial dimensions is straightforward.

85 citations

Journal ArticleDOI
TL;DR: In this paper, Katz et al. proposed a mesh-based hydrodynamics code for merging white dwarf (WD) supernova (SN Ia) progenitor problem.
Abstract: Author(s): Katz, MP; Zingale, M; Calder, AC; Swesty, FD; Almgren, AS; Zhang, W | Abstract: The Type Ia supernova (SN Ia) progenitor problem is one of the most perplexing and exciting problems in astrophysics, requiring detailed numerical modeling to complement observations of these explosions. One possible progenitor that has merited recent theoretical attention is the white dwarf (WD) merger scenario, which has the potential to naturally explain many of the observed characteristics of SNe Ia. To date there have been relatively few self-consistent simulations of merging WD systems using mesh-based hydrodynamics. This is the first paper in a series describing simulations of these systems using a hydrodynamics code with adaptive mesh refinement. In this paper we describe our numerical methodology and discuss our implementation in the compressible hydrodynamics code CASTRO, which solves the Euler equations, and the Poisson equation for self-gravity, and couples the gravitational and rotation forces to the hydrodynamics. Standard techniques for coupling gravitation and rotation forces to the hydrodynamics do not adequately conserve the total energy of the system for our problem, but recent advances in the literature allow progress and we discuss our implementation here. We present a set of test problems demonstrating the extent to which our software sufficiently models a system where large amounts of mass are advected on the computational domain over long timescales. Future papers in this series will describe our treatment of the initial conditions of these systems and will examine the early phases of the merger to determine its viability for triggering a thermonuclear detonation.

36 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Modules for Experiments in Stellar Astrophysics (MESA) as mentioned in this paper is a suite of open source, robust, efficient, thread-safe libraries for a wide range of applications in computational stellar astrophysics.
Abstract: Stellar physics and evolution calculations enable a broad range of research in astrophysics. Modules for Experiments in Stellar Astrophysics (MESA) is a suite of open source, robust, efficient, thread-safe libraries for a wide range of applications in computational stellar astrophysics. A one-dimensional stellar evolution module, MESAstar, combines many of the numerical and physics modules for simulations of a wide range of stellar evolution scenarios ranging from very low mass to massive stars, including advanced evolutionary phases. MESAstar solves the fully coupled structure and composition equations simultaneously. It uses adaptive mesh refinement and sophisticated timestep controls, and supports shared memory parallelism based on OpenMP. State-of-the-art modules provide equation of state, opacity, nuclear reaction rates, element diffusion data, and atmosphere boundary conditions. Each module is constructed as a separate Fortran 95 library with its own explicitly defined public interface to facilitate independent development. Several detailed examples indicate the extensive verification and testing that is continuously performed and demonstrate the wide range of capabilities that MESA possesses. These examples include evolutionary tracks of very low mass stars, brown dwarfs, and gas giant planets to very old ages; the complete evolutionary track of a 1 M ☉ star from the pre-main sequence (PMS) to a cooling white dwarf; the solar sound speed profile; the evolution of intermediate-mass stars through the He-core burning phase and thermal pulses on the He-shell burning asymptotic giant branch phase; the interior structure of slowly pulsating B Stars and Beta Cepheids; the complete evolutionary tracks of massive stars from the PMS to the onset of core collapse; mass transfer from stars undergoing Roche lobe overflow; and the evolution of helium accretion onto a neutron star. MESA can be downloaded from the project Web site (http://mesa.sourceforge.net/).

3,474 citations

Journal ArticleDOI
TL;DR: Modules for Experiments in Stellar Astrophysics (MESA) as discussed by the authors is an open source software package for modeling the evolution of stellar structures and composition. But it is not suitable for large-scale systems such as supernovae.
Abstract: We substantially update the capabilities of the open source software package Modules for Experiments in Stellar Astrophysics (MESA), and its one-dimensional stellar evolution module, MESA star. Improvements in MESA star's ability to model the evolution of giant planets now extends its applicability down to masses as low as one-tenth that of Jupiter. The dramatic improvement in asteroseismology enabled by the space-based Kepler and CoRoT missions motivates our full coupling of the ADIPLS adiabatic pulsation code with MESA star. This also motivates a numerical recasting of the Ledoux criterion that is more easily implemented when many nuclei are present at non-negligible abundances. This impacts the way in which MESA star calculates semi-convective and thermohaline mixing. We exhibit the evolution of 3-8 M ? stars through the end of core He burning, the onset of He thermal pulses, and arrival on the white dwarf cooling sequence. We implement diffusion of angular momentum and chemical abundances that enable calculations of rotating-star models, which we compare thoroughly with earlier work. We introduce a new treatment of radiation-dominated envelopes that allows the uninterrupted evolution of massive stars to core collapse. This enables the generation of new sets of supernovae, long gamma-ray burst, and pair-instability progenitor models. We substantially modify the way in which MESA star solves the fully coupled stellar structure and composition equations, and we show how this has improved the scaling of MESA's calculational speed on multi-core processors. Updates to the modules for equation of state, opacity, nuclear reaction rates, and atmospheric boundary conditions are also provided. We describe the MESA Software Development Kit that packages all the required components needed to form a unified, maintained, and well-validated build environment for MESA. We also highlight a few tools developed by the community for rapid visualization of MESA star results.

2,761 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1195 moreInstitutions (139)
TL;DR: In this paper, the authors used the observed time delay of $(+1.74\pm 0.05)\,{\rm{s}}$ between GRB 170817A and GW170817 to constrain the difference between the speed of gravity and speed of light to be between $-3
Abstract: On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is $5.0\times {10}^{-8}$. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short GRBs. We use the observed time delay of $(+1.74\pm 0.05)\,{\rm{s}}$ between GRB 170817A and GW170817 to: (i) constrain the difference between the speed of gravity and the speed of light to be between $-3\times {10}^{-15}$ and $+7\times {10}^{-16}$ times the speed of light, (ii) place new bounds on the violation of Lorentz invariance, (iii) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region emitting the gamma-rays. GRB 170817A is the closest short GRB with a known distance, but is between 2 and 6 orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors, and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances. Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo detectors of 0.1–1.4 per year during the 2018–2019 observing run and 0.3–1.7 per year at design sensitivity.

2,633 citations

Journal ArticleDOI
TL;DR: The first version of a new-generation simulation code, FLASH, solves the fully compressible, reactive hydrodynamic equations and allows for the use of adaptive mesh refinement and contains state-of-the-art modules for the equations of state and thermonuclear reaction networks.
Abstract: We report on the completion of the first version of a new-generation simulation code, FLASH. The FLASH code solves the fully compressible, reactive hydrodynamic equations and allows for the use of adaptive mesh refinement. It also contains state-of-the-art modules for the equations of state and thermonuclear reaction networks. The FLASH code was developed to study the problems of nuclear flashes on the surfaces of neutron stars and white dwarfs, as well as in the interior of white dwarfs. We expect, however, that the FLASH code will be useful for solving a wide variety of other problems. This first version of the code has been subjected to a large variety of test cases and is currently being used for production simulations of X-ray bursts, Rayleigh-Taylor and Richtmyer-Meshkov instabilities, and thermonuclear flame fronts. The FLASH code is portable and already runs on a wide variety of massively parallel machines, including some of the largest machines now extant.

2,319 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the current understanding of the lives and deaths of massive stars, with special attention to the relevant nuclear and stellar physics, and focused on their post-helium-burning evolution.
Abstract: amount of energy, a tiny fraction of which is sufficient to explode the star as a supernova. The authors examine our current understanding of the lives and deaths of massive stars, with special attention to the relevant nuclear and stellar physics. Emphasis is placed upon their post-helium-burning evolution. Current views regarding the supernova explosion mechanism are reviewed, and the hydrodynamics of supernova shock propagation and ‘‘fallback’’ is discussed. The calculated neutron star masses, supernova light curves, and spectra from these model stars are shown to be consistent with observations. During all phases, particular attention is paid to the nucleosynthesis of heavy elements. Such stars are capable of producing, with few exceptions, the isotopes between mass 16 and 88 as well as a large fraction of still heavier elements made by the r and p processes.

1,981 citations