scispace - formally typeset
Search or ask a question
Author

F. Frontera

Other affiliations: INAF
Bio: F. Frontera is an academic researcher from University of Ferrara. The author has contributed to research in topics: Gamma-ray burst & Afterglow. The author has an hindex of 56, co-authored 244 publications receiving 13884 citations. Previous affiliations of F. Frontera include INAF.


Papers
More filters
Journal ArticleDOI
15 Oct 1998-Nature
TL;DR: In this paper, the authors reported the discovery of transient optical emission in the error box of the gamma-ray burst GRB980425, the light curve of which was very different from that of previous optical afterglows associated with Gamma-ray bursts.
Abstract: The discovery of afterglows associated with gamma-ray bursts at X-ray, optical and radio wavelengths and the measurement of the redshifts of some of these events has established that gamma-ray bursts lie at extreme distances, making them the most powerful photon-emitters known in the Universe. Here we report the discovery of transient optical emission in the error box of the gamma-ray burst GRB980425, the light curve of which was very different from that of previous optical afterglows associated with gamma-ray bursts. The optical transient is located in a spiral arm of the galaxy ESO 184-GS2, which has a redshift velocity of only 2,550 km/ s. Its optical spectrum and location indicate that it is a very luminous supernova, which has been identified as SN1998bw. If this supernova and GRB980425 are indeed associated, the energy radiated in gamma-rays is at least four orders of magnitude less than in other gamma-ray bursts, although its appearance was otherwise unremarkable: this indicates that very different mechanisms can give rise to gamma-ray bursts. But independent of this association, the supernova is itself unusual, exhibiting an unusual light curve at radio wavelengths that requires that the gas emitting the radio photons be expanding relativistically.

1,823 citations

Journal ArticleDOI
TL;DR: In this article, the authors reported the discovery of an optical transient, in the BeppoSAX Wide Field Camera error box of GRB980425, which occurred within about a day of the gamma-ray burst.
Abstract: The discovery of X-ray, optical and radio afterglows of gamma-ray bursts (GRBs) and the measurements of the distances to some of them have established that these events come from Gpc distances and are the most powerful photon emitters known in the Universe, with peak luminosities up to 10^52 erg/s. We here report the discovery of an optical transient, in the BeppoSAX Wide Field Camera error box of GRB980425, which occurred within about a day of the gamma-ray burst. Its optical light curve, spectrum and location in a spiral arm of the galaxy ESO 184-G82, at a redshift z = 0.0085, show that the transient is a very luminous type Ic supernova, SN1998bw. The peculiar nature of SN1998bw is emphasized by its extraordinary radio properties which require that the radio emitter expand at relativistical speed. Since SN1998bw is very different from all previously observed afterglows of GRBs, our discovery raises the possibility that very different mechanisms may give rise to GRBs, which differ little in their gamma-ray properties.

1,708 citations

Journal ArticleDOI
17 Apr 1997
TL;DR: In this paper, the authors reported the detection of a transient and fading optical source in the error box associated with the burst GRB970228, less than 21 hours after the burst, suggesting that the burst occurred in that galaxy and thus that γ-ray bursts in general lie at cosmological distance.
Abstract: For almost a quarter of a century1, the origin of γ-ray bursts— brief, energetic bursts of high-energy photons—has remained unknown. The detection of a counterpart at another wavelength has long been thought to be a key to understanding the nature of these bursts (see, for example, ref. 2), but intensive searches have not revealed such a counterpart. The distribution and properties of the bursts3 are explained naturally if they lie at cosmological distances (a few Gpc)4, but there is a countervailing view that they are relatively local objects5, perhaps distributed in a very large halo around our Galaxy. Here we report the detection of a transient and fading optical source in the error box associated with the burst GRB970228, less than 21 hours after the burst6,7. The optical transient appears to be associated with a faint galaxy7,8, suggesting that the burst occurred in that galaxy and thus that γ-ray bursts in general lie at cosmological distance.

916 citations

Journal ArticleDOI
TL;DR: The first afterglow of a gamma-ray burst was detected and quickly positioned by the Beppo-SAX satellite on 1997 February 28 (GRB970228) as discussed by the authors.
Abstract: Here we report the discovery in the X-ray band of the first afterglow of a gamma-ray burst. It was detected and quickly positioned by the Beppo-SAX satellite on 1997 February 28 (GRB970228). The X-ray afterglow source was detected with the X-ray telescopes aboard the same satellite about eight hours after the burst and faded away in a few days with a power law decay function. The energetic content of the X-ray afterglow results to be a significant fraction of gamma-ray burst energetics. The Beppo-SAX detection and fast imaging of GRB970228 started a multiwavelength campaign that lead to the identification of a fading optical source in a position consistent with the X-ray source.

829 citations

Journal ArticleDOI
TL;DR: The discovery of the peculiar supernova (SN) 1998bw and its possible association with the gamma-ray burst (GRB) 980425$ 1,2,3} provides new clues to the understanding of the explosion mechanism of very massive stars and to the origin of some classes of gamma ray bursts.
Abstract: The discovery of the peculiar supernova (SN) 1998bw and its possible association with the gamma-ray burst (GRB) 980425$^{1,2,3}$ provide new clues to the understanding of the explosion mechanism of very massive stars and to the origin of some classes of gamma-ray bursts. Its spectra indicate that SN~1998bw is a type Ic supernova$^{3,4}$, but its peak luminosity is unusually high compared with typical type Ic supernovae$^3$. Here we report our findings that the optical spectra and the light curve of SN 1998bw can be well reproduced by an extremely energetic explosion of a massive carbon+oxygen (C+O) star. The kinetic energy is as large as $\sim 2-5 \times 10^{52}$ ergs, more than ten times the previously known energy of supernovae. For this reason, the explosion may be called a `hypernova'. Such a C+O star is the stripped core of a very massive star that has lost its H and He envelopes. The extremely large energy, suggesting the existence of a new mechanism of massive star explosion, can cause a relativistic shock that may be linked to the gamma-ray burst.

589 citations


Cited by
More filters
Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
20 Aug 2004
TL;DR: The Swift mission as discussed by the authors is a multi-wavelength observatory for gamma-ray burst (GRB) astronomy, which is a first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions.
Abstract: The Swift mission, scheduled for launch in 2004, is a multiwavelength observatory for gamma-ray burst (GRB) astronomy. It is a first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions. It will be far more powerful than any previous GRB mission, observing more than 100 bursts yr � 1 and performing detailed X-ray and UV/optical afterglow observations spanning timescales from 1 minute to several days after the burst. The objectives are to (1) determine the origin of GRBs, (2) classify GRBs and search for new types, (3) study the interaction of the ultrarelativistic outflows of GRBs with their surrounding medium, and (4) use GRBs to study the early universe out to z >10. The mission is being developed by a NASA-led international collaboration. It will carry three instruments: a newgeneration wide-field gamma-ray (15‐150 keV) detector that will detect bursts, calculate 1 0 ‐4 0 positions, and trigger autonomous spacecraft slews; a narrow-field X-ray telescope that will give 5 00 positions and perform spectroscopy in the 0.2‐10 keV band; and a narrow-field UV/optical telescope that will operate in the 170‐ 600 nm band and provide 0B3 positions and optical finding charts. Redshift determinations will be made for most bursts. In addition to the primary GRB science, the mission will perform a hard X-ray survey to a sensitivity of � 1m crab (� 2;10 � 11 ergs cm � 2 s � 1 in the 15‐150 keV band), more than an order of magnitude better than HEAO 1 A-4. A flexible data and operations system will allow rapid follow-up observations of all types of

3,753 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1195 moreInstitutions (139)
TL;DR: In this paper, the authors used the observed time delay of $(+1.74\pm 0.05)\,{\rm{s}}$ between GRB 170817A and GW170817 to constrain the difference between the speed of gravity and speed of light to be between $-3
Abstract: On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is $5.0\times {10}^{-8}$. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short GRBs. We use the observed time delay of $(+1.74\pm 0.05)\,{\rm{s}}$ between GRB 170817A and GW170817 to: (i) constrain the difference between the speed of gravity and the speed of light to be between $-3\times {10}^{-15}$ and $+7\times {10}^{-16}$ times the speed of light, (ii) place new bounds on the violation of Lorentz invariance, (iii) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region emitting the gamma-rays. GRB 170817A is the closest short GRB with a known distance, but is between 2 and 6 orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors, and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances. Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo detectors of 0.1–1.4 per year during the 2018–2019 observing run and 0.3–1.7 per year at design sensitivity.

2,633 citations

Journal ArticleDOI
01 Jan 2005
TL;DR: The Swift Gamma-Ray Explorer (XRT) as mentioned in this paper uses a mirror set built for JET-X and an XMM-Newton/EPIC MOS CCD detector to provide a sensitive broad-band (0.2-10 keV) X-ray imager with effective area of > 120 cm2 at 1.5 keV, field of view of 23.6 × 23. 6 arcminutes, and angular resolution of 18 arcseconds.
Abstract: he Swift Gamma-Ray Explorer is designed to make prompt multiwavelength observations of gamma-ray bursts (GRBs) and GRB afterglows. The X-ray telescope (XRT) enables Swift to determine GRB positions with a few arcseconds accuracy within 100 s of the burst onset. The XRT utilizes a mirror set built for JET-X and an XMM-Newton/EPIC MOS CCD detector to provide a sensitive broad-band (0.2–10 keV) X-ray imager with effective area of > 120 cm2 at 1.5 keV, field of view of 23.6 × 23.6 arcminutes, and angular resolution of 18 arcseconds (HPD). The detection sensitivity is 2×10−14 erg cm−2 s−1 in 104 s. The instrument is designed to provide automated source detection and position reporting within 5 s of target acquisition. It can also measure the redshifts of GRBs with Fe line emission or other spectral features. The XRT operates in an auto-exposure mode, adjusting the CCD readout mode automatically to optimize the science return for each frame as the source intensity fades. The XRT will measure spectra and lightcurves of the GRB afterglow beginning about a minute after the burst and will follow each burst for days or weeks.

2,253 citations

Journal ArticleDOI
TL;DR: In this paper, the authors explore the continued evolution of rotating helium stars, Mα 10 M☉, in which iron-core collapse does not produce a successful outgoing shock but instead forms a black hole of 2-3 Mˉ.
Abstract: Using a two-dimensional hydrodynamics code (PROMETHEUS), we explore the continued evolution of rotating helium stars, Mα 10 M☉, in which iron-core collapse does not produce a successful outgoing shock but instead forms a black hole of 2-3 M☉. The model explored in greatest detail is the 14 M☉ helium core of a 35 M☉ main-sequence star. The outcome is sensitive to the angular momentum. For j16 ≡ j/(1016 cm2 s-1) 3, material falls into the black hole almost uninhibited. No outflows are expected. For j16 20, the infalling matter is halted by centrifugal force outside 1000 km where neutrino losses are negligible. The equatorial accretion rate is very low, and explosive oxygen burning may power a weak equatorial explosion. For 3 j16 20, however, a reasonable value for such stars, a compact disk forms at a radius at which the gravitational binding energy can be efficiently radiated as neutrinos or converted to beamed outflow by magnetohydrodynamical (MHD) processes. These are the best candidates for producing gamma-ray bursts (GRBs). Here we study the formation of such a disk, the associated flow patterns, and the accretion rate for disk viscosity parameter α ≈ 0.001 and 0.1. Infall along the rotational axis is initially uninhibited, and an evacuated channel opens during the first few seconds. Meanwhile the black hole is spun up by the accretion (to a ≈ 0.9), and energy is dissipated in the disk by MHD processes and radiated by neutrinos. For the α = 0.1 model, appreciable energetic outflows develop between polar angles of 30° and 45°. These outflows, powered by viscous dissipation in the disk, have an energy of up to a few times 1051 ergs and a mass ~1 M☉ and are rich in 56Ni. They constitute a supernova-like explosion by themselves. Meanwhile accretion through the disk is maintained for approximately 10-20 s but is time variable (±30%) because of hydrodynamical instabilities at the outer edge in a region where nuclei are experiencing photodisintegration. Because the efficiency of neutrino energy deposition is sensitive to the accretion rate, this instability leads to highly variable energy deposition in the polar regions. Some of this variability, which has significant power at 50 ms and overtones, may persist in the time structure of the burst. During the time followed, the average accretion rate for the standard α = 0.1 and j16 = 10 model is 0.07 M☉ s-1. The total energy deposited along the rotational axes by neutrino annihilation is (1-14) × 1051 ergs, depending upon the evolution of the Kerr parameter and uncertain neutrino efficiencies. Simulated deposition of energy in the polar regions, at a constant rate of 5 × 1050 ergs s-1 per pole, results in strong relativistic outflow jets beamed to about 1% of the sky. These jets may be additionally modulated by instabilities in the sides of the "nozzle" through which they flow. The jets blow aside the accreting material, remain highly focused, and are capable of penetrating the star in ~10 s. After the jet breaks through the surface of the star, highly relativistic flow can emerge. Because of the sensitivity of the mass ejection and jets to accretion rate, angular momentum, and disk viscosity, and the variation of observational consequences with viewing angle, a large range of outcomes is possible, ranging from bright GRBs like GRB 971214 to faint GRB-supernovae like SN 1998bw. X-ray precursors are also possible as the jet first breaks out of the star. While only a small fraction of supernovae make GRBs, we predict that collapsars will always make supernovae similar to SN 1998bw. However, hard, energetic GRBs shorter than a few seconds will be difficult to produce in this model and may require merging neutron stars and black holes for their explanation.

2,209 citations