scispace - formally typeset
Search or ask a question
Author

F. Gittes

Bio: F. Gittes is an academic researcher from University of Michigan. The author has contributed to research in topics: Optical tweezers & Viscoelasticity. The author has an hindex of 15, co-authored 30 publications receiving 5331 citations. Previous affiliations of F. Gittes include Washington State University & University of Washington.

Papers
More filters
Journal ArticleDOI
TL;DR: The first accurate measurements of the flexural rigidity of microtubules are reported, showing that a microtubule is rigid over cellular dimensions and is expected to be almost inextensible.
Abstract: Microtubules are long, proteinaceous filaments that perform structural functions in eukaryotic cells by defining cellular shape and serving as tracks for intracellular motor proteins. We report the first accurate measurements of the flexural rigidity of microtubules. By analyzing the thermally driven fluctuations in their shape, we estimated the mean flexural rigidity of taxol-stabilized microtubules to be 2.2 x 10(-23) Nm2 (with 6.4% uncertainty) for seven unlabeled microtubules and 2.1 x 10(-23) Nm2 (with 4.7% uncertainty) for eight rhodamine-labeled microtubules. These values are similar to earlier, less precise estimates of microtubule bending stiffness obtained by modeling flagellar motion. A similar analysis on seven rhodamine-phalloidin-labeled actin filaments gave a flexural rigidity of 7.3 x 10(-26) Nm2 (with 6% uncertainty), consistent with previously reported results. The flexural rigidity of these microtubules corresponds to a persistence length of 5,200 microns showing that a microtubule is rigid over cellular dimensions. By contrast, the persistence length of an actin filament is only approximately 17.7 microns, perhaps explaining why actin filaments within cells are usually cross-linked into bundles. The greater flexural rigidity of a microtubule compared to an actin filament mainly derives from the former's larger cross-section. If tubulin were homogeneous and isotropic, then the microtubule's Young's modulus would be approximately 1.2 GPa, similar to Plexiglas and rigid plastics. Microtubules are expected to be almost inextensible: the compliance of cells is due primarily to filament bending or sliding between filaments rather than the stretching of the filaments themselves.

1,746 citations

Journal ArticleDOI
TL;DR: A model is provided for the essential mechanism of intensity shifts as first-order far-field interference between the outgoing laser beam and scattered light from the trapped particle, where the latter is phase advanced owing to the Gouy phase anomaly.
Abstract: The lateral position of an optically trapped object in a microscope can be monitored with a quadrant photodiode to within nanometers or better by measurement of intensity shifts in the back focal plane of the lens that is collimating the outgoing laser light. This detection is largely independent of the position of the trap in the field of view. We provide a model for the essential mechanism of this type of detection, giving a simple, closed-form analytic solution with simplifying assumptions. We identify intensity shifts as first-order far-field interference between the outgoing laser beam and scattered light from the trapped particle, where the latter is phase advanced owing to the Gouy phase anomaly. This interference also reflects momentum transfer to the particle, giving the spring constant of the trap. Our response formula is compared with the results of experiments.

659 citations

Journal ArticleDOI
TL;DR: It is found that in the most common experimental circumstances, using micron-sized polystyrene or silica beads, absorption of the laser light in the solvent around the trapped particle, not in the particle itself, is the most important contribution to heating.

594 citations

Journal ArticleDOI
TL;DR: In this paper, a high-resolution, high-bandwidth technique for determining the local viscoelasticity of soft materials such as polymer gels is described, where loss and storage shear moduli are determined from the power spectra of thermal fluctuations of embedded micron-sized probe particles, observed with an interferometric microscope.
Abstract: We describe a high-resolution, high-bandwidth technique for determining the local viscoelasticity of soft materials such as polymer gels. Loss and storage shear moduli are determined from the power spectra of thermal fluctuations of embedded micron-sized probe particles, observed with an interferometric microscope. This provides a passive, small-amplitude measurement of rheological properties over a much broader frequency range than previously accessible to microrheology. We study both F-actin biopolymer solutions and polyacrylamide (PAAm) gels, as model semiflexible and flexible systems, respectively. We observe high-frequency ${\ensuremath{\omega}}^{3/4}$ scaling of the shear modulus in F-actin solutions, in contrast to ${\ensuremath{\omega}}^{1/2}$ scaling for PAAm.

470 citations

Journal ArticleDOI
TL;DR: The magnitude of the force argues against one type of "ratchet" model in which the motor is hypothesized to rectify the diffusion of the microtubule and is consistent with models in which force is a consequence of strain developed in an elastic element within the motor.

348 citations


Cited by
More filters
Journal ArticleDOI
14 Aug 2003-Nature
TL;DR: This research presents the next generation of single-beam optical traps, which promise to take optical tweezers out of the laboratory and into the mainstream of manufacturing and diagnostics and even become consumer products.
Abstract: Optical tweezers use the forces exerted by a strongly focused beam of light to trap and move objects ranging in size from tens of nanometres to tens of micrometres. Since their introduction in 1986, the optical tweezer has become an important tool for research in the fields of biology, physical chemistry and soft condensed matter physics. Recent advances promise to take optical tweezers out of the laboratory and into the mainstream of manufacturing and diagnostics; they may even become consumer products. The next generation of single-beam optical traps offers revolutionary new opportunities for fundamental and applied research.

4,647 citations

Journal ArticleDOI
21 Feb 2003-Cell
TL;DR: A core set of proteins including actin, Arp2/3 complex, profilin, capping protein, and ADF/cofilin can reconstitute the process in vitro, and mathematical models of the constituent reactions predict the rate of motion.

3,793 citations

Book
01 Jan 2006
TL;DR: In this paper, the authors proposed a method for propagating and focusing of optical fields in a nano-optics environment using near-field optical probes and probe-sample distance control.
Abstract: 1. Introduction 2. Theoretical foundations 3. Propagation and focusing of optical fields 4. Spatial resolution and position accuracy 5. Nanoscale optical microscopy 6. Near-field optical probes 7. Probe-sample distance control 8. Light emission and optical interaction in nanoscale environments 9. Quantum emitters 10. Dipole emission near planar interfaces 11. Photonic crystals and resonators 12. Surface plasmons 13. Forces in confined fields 14. Fluctuation-induced phenomena 15. Theoretical methods in nano-optics Appendices Index.

3,772 citations

Journal ArticleDOI
TL;DR: In this article, the surface forces that lead to wetting are considered, and the equilibrium surface coverage of a substrate in contact with a drop of liquid is examined, while the hydrodynamics of both wetting and dewetting is influenced by the presence of the three-phase contact line separating "wet" regions from those that are either dry or covered by a microscopic film.
Abstract: Wetting phenomena are ubiquitous in nature and technology. A solid substrate exposed to the environment is almost invariably covered by a layer of fluid material. In this review, the surface forces that lead to wetting are considered, and the equilibrium surface coverage of a substrate in contact with a drop of liquid. Depending on the nature of the surface forces involved, different scenarios for wetting phase transitions are possible; recent progress allows us to relate the critical exponents directly to the nature of the surface forces which lead to the different wetting scenarios. Thermal fluctuation effects, which can be greatly enhanced for wetting of geometrically or chemically structured substrates, and are much stronger in colloidal suspensions, modify the adsorption singularities. Macroscopic descriptions and microscopic theories have been developed to understand and predict wetting behavior relevant to microfluidics and nanofluidics applications. Then the dynamics of wetting is examined. A drop, placed on a substrate which it wets, spreads out to form a film. Conversely, a nonwetted substrate previously covered by a film dewets upon an appropriate change of system parameters. The hydrodynamics of both wetting and dewetting is influenced by the presence of the three-phase contact line separating "wet" regions from those that are either dry or covered by a microscopic film only. Recent theoretical, experimental, and numerical progress in the description of moving contact line dynamics are reviewed, and its relation to the thermodynamics of wetting is explored. In addition, recent progress on rough surfaces is surveyed. The anchoring of contact lines and contact angle hysteresis are explored resulting from surface inhomogeneities. Further, new ways to mold wetting characteristics according to technological constraints are discussed, for example, the use of patterned surfaces, surfactants, or complex fluids.

2,501 citations

Journal ArticleDOI
TL;DR: These techniques are described and illustrated with examples highlighting current capabilities and limitations of single-molecule force spectroscopy.
Abstract: Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. Here we describe these techniques and illustrate them with examples highlighting current capabilities and limitations.

2,155 citations