scispace - formally typeset
Search or ask a question
Author

F.H. Lopes da Silva

Other affiliations: Royal Institute of Technology
Bio: F.H. Lopes da Silva is an academic researcher from University of Amsterdam. The author has contributed to research in topics: Variance function & Dipole. The author has an hindex of 14, co-authored 15 publications receiving 12929 citations. Previous affiliations of F.H. Lopes da Silva include Royal Institute of Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: Quantification of ERD/ERS in time and space is demonstrated on data from a number of movement experiments, whereby either the same or different locations on the scalp can display ERD and ERS simultaneously.

6,093 citations

Journal ArticleDOI
TL;DR: The discrimination between the four motor imagery tasks based on classification of single EEG trials improved when, in addition to event-related desynchronization (ERD), event- related synchronization (ERS) patterns were induced in at least one or two tasks.

1,402 citations

Journal ArticleDOI
TL;DR: This dissertation aims to provide a history of web exceptionalism from 1989 to 2002, a period chosen in order to explore its roots as well as specific cases up to and including the year in which descriptions of “Web 2.0” began to circulate.

810 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: With adequate recognition and effective engagement of all issues, BCI systems could eventually provide an important new communication and control option for those with motor disabilities and might also give those without disabilities a supplementary control channel or a control channel useful in special circumstances.

6,803 citations

Journal ArticleDOI
TL;DR: The empirical and theoretical development of the P300 event-related brain potential is reviewed by considering factors that contribute to its amplitude, latency, and general characteristics.

6,283 citations

Journal ArticleDOI
TL;DR: In this article, it is suggested to adjust the frequency windows of alpha and theta for each subject by using individual alpha frequency as an anchor point, based on this procedure, a consistent interpretation of a variety of findings is made possible.

5,613 citations

Book
01 Jan 2006
TL;DR: The brain's default state: self-organized oscillations in rest and sleep, and perturbation of the default patterns by experience.
Abstract: Prelude. Cycle 1. Introduction. Cycle 2. Structure defines function. Cycle 3. Diversity of cortical functions is provided by inhibition. Cycle 4. Windows on the brain. Cycle 5. A system of rhythms: from simple to complex dynamics. Cycle 6. Synchronization by oscillation. Cycle 7. The brain's default state: self-organized oscillations in rest and sleep. Cycle 8. Perturbation of the default patterns by experience. Cycle 9. The gamma buzz: gluing by oscillations in the waking brain. Cycle 10. Perceptions and actions are brain state-dependent. Cycle 11. Oscillations in the "other cortex:" navigation in real and memory space. Cycle 12. Coupling of systems by oscillations. Cycle 13. The tough problem. References.

4,266 citations

Journal ArticleDOI
11 Aug 2005-Nature
TL;DR: The dorsocaudal medial entorhinal cortex (dMEC) contains a directionally oriented, topographically organized neural map of the spatial environment, whose key unit is the ‘grid cell’, which is activated whenever the animal's position coincides with any vertex of a regular grid of equilateral triangles spanning the surface of the environment.
Abstract: The ability to find one's way depends on neural algorithms that integrate information about place, distance and direction, but the implementation of these operations in cortical microcircuits is poorly understood. Here we show that the dorsocaudal medial entorhinal cortex (dMEC) contains a directionally oriented, topographically organized neural map of the spatial environment. Its key unit is the 'grid cell', which is activated whenever the animal's position coincides with any vertex of a regular grid of equilateral triangles spanning the surface of the environment. Grids of neighbouring cells share a common orientation and spacing, but their vertex locations (their phases) differ. The spacing and size of individual fields increase from dorsal to ventral dMEC. The map is anchored to external landmarks, but persists in their absence, suggesting that grid cells may be part of a generalized, path-integration-based map of the spatial environment.

3,445 citations