scispace - formally typeset
Search or ask a question
Author

F. H. Ludlam

Bio: F. H. Ludlam is an academic researcher. The author has contributed to research in topics: Liquid water content. The author has an hindex of 1, co-authored 1 publications receiving 1118 citations.

Papers
More filters
Book
01 Jan 1971
TL;DR: In the last fifteen years there has been a surge of activity in this science under the stimulus of development in civil and military aviation as discussed by the authors, and the growth of cloud physics during this period has been fostered not only by this general invigoration, but also by recognition of the practicability of exerting some influence upon the behaviour of clouds and their capacity for producing rain, hail, lightning and other meteorological phenomena.
Abstract: Over most of the earth clouds and precipitation are the dominant elements of the weather, and their study includes, directly or indirectly, a large part of the science of meteorology. In the last fifteen years there has been a surge of activity in this science under the stimulus of development in civil and military aviation. The growth of cloud physics during this period has been fostered not only by this general invigoration, but also by recognition of the practicability of exerting some influence upon the behaviour of clouds and their capacity for producing rain, hail, lightning and other meteorological phenomena.

1,134 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors compare and discuss recent experimental and theoretical results in the field of H2O-solid interactions, and emphasize studies of low (submonolayer) coverages of water on well-characterized, single-crystal surfaces of metals, semiconductors and oxides.

2,096 citations

Journal ArticleDOI
TL;DR: A review of the fundamental and technological aspects of these subjects can be found in this article, where the focus is mainly on surface tension effects, which result from the cohesive properties of liquids Paradoxically, cohesive forces promote the breakup of jets, widely encountered in nature, technology and basic science.
Abstract: Jets, ie collimated streams of matter, occur from the microscale up to the large-scale structure of the universe Our focus will be mostly on surface tension effects, which result from the cohesive properties of liquids Paradoxically, cohesive forces promote the breakup of jets, widely encountered in nature, technology and basic science, for example in nuclear fission, DNA sampling, medical diagnostics, sprays, agricultural irrigation and jet engine technology Liquid jets thus serve as a paradigm for free-surface motion, hydrodynamic instability and singularity formation leading to drop breakup In addition to their practical usefulness, jets are an ideal probe for liquid properties, such as surface tension, viscosity or non-Newtonian rheology They also arise from the last but one topology change of liquid masses bursting into sprays Jet dynamics are sensitive to the turbulent or thermal excitation of the fluid, as well as to the surrounding gas or fluid medium The aim of this review is to provide a unified description of the fundamental and the technological aspects of these subjects

1,583 citations

Book ChapterDOI
TL;DR: In this paper, the conservation and distribution of water substance in atmospheric circulations are considered within a frame of continuity principles, model air flows, and models of microphysical processes, where the simplest considerations of precipitation involve its vertical distribution in an updraft column, where condensate appears immediately as precipitation with uniform terminal fallspeed.
Abstract: The conservation and distribution of water substance in atmospheric circulations is considered within a frame of continuity principles, model air flows, and models of microphysical processes. The simplest considerations of precipitation involve its vertical distribution in an updraft column, where condensate appears immediately as precipitation with uniform terminal fallspeed. The study also treats steady two-dimensional air circulations in which time-dependent distributions of water vapor, cloud and precipitation respond to model microphysical processes.

1,572 citations

Journal ArticleDOI
TL;DR: In this paper, the development of this review article has evolved from work carried out by an international team of the International Space Science Institute (ISSI), Bern, Switzerland, and from work performed under the auspices of Scientific Committee on Solar Terrestrial Physics (SCOSTEP) regarding climate and weather of the Sun-Earth System (CAWSES).
Abstract: The development of this review article has evolved from work carried out by an international team of the International Space Science Institute (ISSI), Bern, Switzerland, and from work carried out under the auspices of Scientific Committee on Solar Terrestrial Physics (SCOSTEP) Climate and Weather of the Sun‐Earth System (CAWSES‐1). The support of ISSI in providing workshop and meeting facilities is acknowledged, especially support from Y. Calisesi and V. Manno. SCOSTEP is acknowledged for kindly providing financial assistance to allow the paper to be published under an open access policy. L.J.G. was supported by the UK Natural Environment Research Council (NERC) through their National Centre for Atmospheric Research (NCAS) Climate program. K.M. was supported by a Marie Curie International Outgoing Fellowship within the 6th European Community Framework Programme. J.L. acknowledges support by the EU/FP7 program Assessing Climate Impacts on the Quantity and Quality of Water (ACQWA, 212250) and from the DFG Project Precipitation in the Past Millennium in Europe (PRIME) within the Priority Program INTERDYNAMIK. L.H. acknowledges support from the U.S. NASA Living With a Star program. G.M. acknowledges support from the Office of Science (BER), U.S. Department of Energy, Cooperative Agreement DE‐FC02‐97ER62402, and the National Science Foundation. We also wish to thank Karin Labitzke and Markus Kunze for supplying an updated Figure 13, Andrew Heaps for technical support, and Paul Dickinson for editorial support. Part of the research was carried out under the SPP CAWSES funded by GFG. J.B. was financially supported by NCCR Climate–Swiss Climate Research.

1,045 citations

Journal ArticleDOI
TL;DR: In this paper, the ice nucleation active surface site (INAS) density is discussed as a simple and empirical normalized measure for ice nucleization activity, and the authors compare the results obtained with different methodologies.
Abstract: . A small subset of the atmospheric aerosol population has the ability to induce ice formation at conditions under which ice would not form without them (heterogeneous ice nucleation). While no closed theoretical description of this process and the requirements for good ice nuclei is available, numerous studies have attempted to quantify the ice nucleation ability of different particles empirically in laboratory experiments. In this article, an overview of these results is provided. Ice nucleation "onset" conditions for various mineral dust, soot, biological, organic and ammonium sulfate particles are summarized. Typical temperature-supersaturation regions can be identified for the "onset" of ice nucleation of these different particle types, but the various particle sizes and activated fractions reported in different studies have to be taken into account when comparing results obtained with different methodologies. When intercomparing only data obtained under the same conditions, it is found that dust mineralogy is not a consistent predictor of higher or lower ice nucleation ability. However, the broad majority of studies agrees on a reduction of deposition nucleation by various coatings on mineral dust. The ice nucleation active surface site (INAS) density is discussed as a simple and empirical normalized measure for ice nucleation activity. For most immersion and condensation freezing measurements on mineral dust, estimates of the temperature-dependent INAS density agree within about two orders of magnitude. For deposition nucleation on dust, the spread is significantly larger, but a general trend of increasing INAS densities with increasing supersaturation is found. For soot, the presently available results are divergent. Estimated average INAS densities are high for ice-nucleation active bacteria at high subzero temperatures. At the same time, it is shown that INAS densities of some other biological aerosols, like certain pollen grains, fungal spores and diatoms, tend to be similar to those of dust. These particles may owe their high ice nucleation onsets to their large sizes. Surface-area-dependent parameterizations of heterogeneous ice nucleation are discussed. For immersion freezing on mineral dust, fitted INAS densities are available, but should not be used outside the temperature interval of the data they were based on. Classical nucleation theory, if employed with only one fitted contact angle, does not reproduce the observed temperature dependence for immersion nucleation, the temperature and supersaturation dependence for deposition nucleation, and the time dependence of ice nucleation. Formulations of classical nucleation theory with distributions of contact angles offer possibilities to overcome these weaknesses.

946 citations