scispace - formally typeset
Search or ask a question
Author

F. Kusumo

Bio: F. Kusumo is an academic researcher from University of Technology, Sydney. The author has contributed to research in topics: Biodiesel & Biodiesel production. The author has an hindex of 20, co-authored 38 publications receiving 1724 citations. Previous affiliations of F. Kusumo include University of Malaya & National University of Malaysia.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors optimize the biodiesel production process parameters (methanol-to-oil ratio, agitation speed and concentration of the potassium hydroxide catalyst) of a biodiesel derived from non-edible feedstocks, namely Jatropha curcas and Ceiba pentandra, using response surface methodology based on Box-Behnken experimental design.

272 citations

Journal ArticleDOI
15 Sep 2018-Energy
TL;DR: In this article, an experimental investigation is carried out to evaluate the performance and exhaust emissions of a single cylinder diesel engine fuelled with biodiesel-bioethanol-diesel blends.

209 citations

Journal ArticleDOI
TL;DR: In this paper, microwave irradiation-assisted transesterification was used to produce W70CI30 biodiesel from a mixture of waste cooking oil and Calophyllum inophyllus oil.

198 citations

Journal ArticleDOI
TL;DR: In this paper, an extreme learning machine integrated with cuckoo search algorithm was developed to predict and optimize the process parameters of microwave irradiation-assisted transesterification process conditions.

190 citations

Journal ArticleDOI
TL;DR: In this paper, Artificial Neural Networks (ANN) and Ant Colony Optimization (ACO) were used to optimize the process variables for alkaline-catalyzed transesterification of CI40CP60 oil mixture.

171 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors provided the substantial information on biodiesel to the researchers, engineers and policy makers, and concluded that biodiesel has the potential to be used as a diesel fuel substitute in diesel engines to solve the energy and environment crisis.
Abstract: Due to the finite stock of fossil fuels and its negative impact on the environment, many countries across the world are now leaning toward renewable sources energies like solar energy, wind energy, biofuel, hydropower, geothermal and ocean energy to ensure energy for the countries development security. Biodiesel is one kind of biofuel that is renewable, biodegradable and has similar properties of fossil diesel fuel. The aim of this paper is to provide the substantial information on biodiesel to the researchers, engineers and policy makers. To achieve the goal, this paper summarizes the information on biofuel development, feedstocks around the world, oil extraction technic, biodiesel production processes. Furthermore, this paper will also discuss the advantages of biodiesel compared to fossil fuel. Finally, the combustion behavior of biodiesel in an internal combustion engine is discussed and it will help the researchers and policy maker and manufacturer. To determine the future and goal of automotive technology the study found that, feedstock selection for biodiesel production is very important as it associates 75% production cost. Moreover, the test of fuel properties is very important before using in the engine which depends on the type of feedstocks, origin country, and production process. Most of the researchers reported that the use of biodiesel in diesel engine reduces engine power slightly but reduces the harmful emission significantly. Finally, the study concludes that biodiesel has the potential to be used as a diesel fuel substitute in diesel engines to solve the energy and environment crisis.

467 citations

Journal ArticleDOI
01 May 2019-Energy
TL;DR: In this paper, the combined effect of nano additives, combustion chamber geometry and injection timing in a single cylinder diesel engine fuelled with ternary fuel (diesel-biodiesel-ethanol) blends is investigated.

307 citations

Journal ArticleDOI
TL;DR: In this article, the authors comprehensively reviewed biodiesel manufacturing techniques from natural oils and fats using conventional and advanced technologies with an in-depth state-of-the-art focus on the transesterification unit.

294 citations

Journal ArticleDOI
TL;DR: In this paper, a review of 1660 patents related to biodiesel production were reviewed and grouped into five categories depending on whether they related to starting materials, pre-treatment methods, catalysts, reactors and processing methods or testing methods.
Abstract: Biodiesel is a renewable fuel made from vegetable oils and animal fats. Compared with fossil fuels, it has the potential to alleviate environmental pressures and achieve sustainable development. In this paper, 1660 patents related to biodiesel production were reviewed. They were published between January 1999 and July 2018 and were retrieved from the Derwent Innovation patent database. The patents were grouped into five categories depending on whether they related to starting materials, pre-treatment methods, catalysts, reactors and processing methods, or testing methods. Their analysis shows that the availability of biodiesel starting materials depends on climate, geographical location, local soil conditions, and local agricultural practices. Starting materials constitute 75% of overall production costs and, therefore, it is crucial to select the best feedstock. Pre-treatment of feedstock can improve its suitability for processing and increase extraction effectiveness and oil yield. Catalysts can enhance the solubility of alcohol, leading to higher reaction rates, faster biodiesel production processes, and lower biodiesel production costs. Moreover, the apparatus and processes used strongly affect the oil yield and quality, and production cost. In order to be commercialized and marketed, biodiesel should pass either the American Society for Testing and Materials (ASTM) standards or European Standards (EN). Due to increases in environmental awareness, it is likely that the number of published patents on biodiesel production will remain stable or even increase.

289 citations

25 May 2016
TL;DR: In this paper, the authors collected data from peer-reviewed publications between 1980 and 2015 which examined maize and wheat yield responses to drought using field experiments and performed unweighted analysis using the log response ratio to calculate the bootstrapped confidence limits of yield responses and calculated drought sensitivities with regards to those covarying factors.
Abstract: Drought has been a major cause of agricultural disaster, yet how it affects the vulnerability of maize and wheat production in combination with several co-varying factors (i.e., phenological phases, agro-climatic regions, soil texture) remains unclear. Using a data synthesis approach, this study aims to better characterize the effects of those co-varying factors with drought and to provide critical information on minimizing yield loss. We collected data from peer-reviewed publications between 1980 and 2015 which examined maize and wheat yield responses to drought using field experiments. We performed unweighted analysis using the log response ratio to calculate the bootstrapped confidence limits of yield responses and calculated drought sensitivities with regards to those co-varying factors. Our results showed that yield reduction varied with species, with wheat having lower yield reduction (20.6%) compared to maize (39.3%) at approximately 40% water reduction. Maize was also more sensitive to drought than wheat, particularly during reproductive phase and equally sensitive in the dryland and non-dryland regions. While no yield difference was observed among regions or different soil texture, wheat cultivation in the dryland was more prone to yield loss than in the non-dryland region. Informed by these results, we discuss potential causes and possible approaches that may minimize drought impacts.

288 citations