scispace - formally typeset
Search or ask a question
Author

F. Penning de Vries

Bio: F. Penning de Vries is an academic researcher from International Water Management Institute. The author has contributed to research in topics: Rainwater harvesting & Agriculture. The author has an hindex of 5, co-authored 8 publications receiving 943 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The extent to which 286 recent interventions in 57 poor countries covering 37 M ha have increased productivity on 12.6 M farms while improving the supply of critical environmental services is shown.
Abstract: Despite great recent progress, hunger and poverty remain widespread and agriculturally driven environmental damage is widely prevalent. The idea of agricultural sustainability centers on the need to develop technologies and practices that do not have adverse effects on environmental goods and services, and that lead to improvements in food productivity. Here we show the extent to which 286 recent interventions in 57 poor countries covering 37 M ha (3% of the cultivated area in developing countries) have increased productivity on 12.6 M farms while improving the supply of critical environmental services. The average crop yield increase was 79% (geometric mean 64%). All crops showed water use efficiency gains, with the highest improvement in rainfed crops. Potential carbon sequestered amounted to an average of 0.35 t C ha(-1) y(-1). If a quarter of the total area under these farming systems adopted sustainability enhancing practices, we estimate global sequestration could be 0.1 Gt C y(-1). Of projects with pesticide data, 77% resulted in a decline in pesticide use by 71% while yields grew by 42%. Although it is uncertain whether these approaches can meet future food needs, there are grounds for cautious optimism, particularly as poor farm households benefit more from their adoption.

613 citations

Journal ArticleDOI
TL;DR: In this article, the authors present an integrated approach to agricultural water management, analysing the interactions between the adoption and participatory adaptation of water system innovations (such as water harvesting, drip irrigation, conservation farming, etc.), increased water use in agriculture and water flows to sustain ecological functions that deliver critical ecosystem services to humans.
Abstract: The challenge of producing food for a rapidly increasing population in semi-arid agro-ecosystems in Southern Africa is daunting. More food necessarily means more consumptive use of so-called green water flow (vapour flow sustaining crop growth). Every increase in food production upstream in a watershed will impact on water user and using systems downstream. Intensifying agriculture has in the past often been carried out with negative side effects in terms of land and water degradation. Water legislation is increasingly incorporating the requirement to safeguard a water reserve to sustain instream ecology. To address the challenges of increasing food production, improving rural livelihoods, while safeguarding critical ecological functions, a research programme has recently been launched on “Smallholder System Innovations in Integrated Watershed Management” (SSI). The programme takes an integrated approach to agricultural water management, analysing the interactions between the adoption and participatory adaptation of water system innovations (such as water harvesting, drip irrigation, conservation farming, etc.), increased water use in agriculture and water flows to sustain ecological functions that deliver critical ecosystem services to humans. The research is carried out in the Pangani Basin in Tanzania and the Thukela Basin in South Africa. A nested scale approach is adopted, which will enable the analysis of scale interactions between water management at the farm level, and cascading hydrological impacts at watershed and basin scale. This paper describes the integrated research approach of the SSI programme, and indicates areas of potential to upgrade rainfed agriculture in water scarcity-prone agro-ecosystems while securing water for downstream use.

147 citations

Journal ArticleDOI
TL;DR: The authors examines the weaknesses in the current understanding of Integrated Water Resources Management (IWRM) from the perspective of livelihoods and argues that IWRM needs to be placed in the broader context of both modern Integrated Natural Resource Management (INRM) and the livelihoods approach, which together take a holistic and people-centered approach.
Abstract: This paper examines the weaknesses in the current understanding of Integrated Water Resources Management (IWRM) from the perspective of livelihoods. Empowering poor people, reducing poverty, improving livelihoods, and promoting economic growth ought to be the basic objectives of IWRM. But as currently understood and used, IWRM often tends to focus on second-generation issues such as cost recovery, reallocation of water to “higher value” uses, and environmental conservation. This paper argues that IWRM needs to be placed in the broader context of both modern Integrated Natural Resource Management (INRM) and the livelihoods approach, which together take a holistic and people-centered approach. The paper concludes with an alternative definition of IWRM as involving the promotion of human welfare, especially the reduction of poverty, encouragement of better livelihoods and balanced economic growth through effective democratic development and management of water and other natural resources in an integrated multilevel framework that is as equitable, sustainable, and transparent as possible, and conserves vital ecosystems. Transparent user-friendly information and models for assisting decision making are essential features of livelihood-oriented IWRM.

102 citations

Journal ArticleDOI
TL;DR: In this article, the authors evaluated the hydrological and economic performance of farm ponds with the view of assessing their contributions to water and food security in semi-arid agro-systems of Kenya.

93 citations

01 Jan 2005
TL;DR: In this paper, the authors evaluated the hydrological and economic performance of farm ponds with the view of assessing their contributions to water and food security in semi-arid agro-systems of Kenya.
Abstract: Abstract Semi-arid agro-ecosystems are characterized by erratic rainfall and high evaporation rates leading to unreliable agricultural production. Total seasonal rainfall may be enough to sustain crop production, but its distribution and occurrence of intra-season dry spells (ISDS) and off-season dry spells (ODS) affect crop production. Rainwater harvesting (RWH) and management, especially on-farm storage ponds for supplemental irrigation offers an opportunity to mitigate the recurrent dry spells. Farm ponds are small runoff storage structures of capacities ranging from 30 to 100 m3 used mainly for supplemental irrigation of kitchen gardens, and sometimes for domestic and livestock water supply. The main objective of the study was to evaluate the hydrological and economic performance of farm ponds with the view of assessing their contributions to water and food security in semi-arid agro-systems of Kenya. Agro-hydrological evaluation of on-farm runoff storage systems entailed field survey, monitoring of water losses, analysis of rainy seasons and dry spell occurrence, soil moisture and water balance, estimation of supplemental irrigation requirement (SIR) and farm-level cost-benefit analysis of cabbage production using low-head drip irrigation system. Significant water losses through seepage and evaporation, which accounted on average for 30–50% of the stored runoff, is one of the factors that affect the adoption and up-scaling of on-farm water storage systems. Frequency analysis of rainfall revealed that there is 80% probability of occurrence of dry spells exceeding 10 and 12 days during the long rains and short rains, respectively. The occurrence of off-season (after rainfall cessation) dry spells was more pronounced than intra-seasonal (within the rainy season) dry spells. The length of intra-seasonal (10–15 days) was less than off-season dry spells (20–30 days). The occurrence of off-season dry spells coincides with the critical crop growth stage, in particular flowering and yield formation stages. A 50 m3 farm pond with a drip system irrigation system was found adequate to meet supplemental irrigation requirement for a kitchen garden of 300–600 m2 planted with a 90 days growing period cabbages. The cost-benefit analysis showed that farm ponds are feasible solutions to persistent crop failures in semi-arid areas which dominant most countries in Sub-Saharan Africa (SSA).

17 citations


Cited by
More filters
Journal ArticleDOI
12 Feb 2010-Science
TL;DR: A multifaceted and linked global strategy is needed to ensure sustainable and equitable food security, different components of which are explored here.
Abstract: Continuing population and consumption growth will mean that the global demand for food will increase for at least another 40 years. Growing competition for land, water, and energy, in addition to the overexploitation of fisheries, will affect our ability to produce food, as will the urgent requirement to reduce the impact of the food system on the environment. The effects of climate change are a further threat. But the world can produce more food and can ensure that it is used more efficiently and equitably. A multifaceted and linked global strategy is needed to ensure sustainable and equitable food security, different components of which are explored here.

9,125 citations

Journal ArticleDOI
TL;DR: A typology of relationships between ecosystem services based on the role of drivers and the interactions between services is proposed to help drive ecological science towards a better understanding of the relationships among multiple ecosystem services.
Abstract: Ecosystem management that attempts to maximize the production of one ecosystem service often results in substantial declines in the provision of other ecosystem services. For this reason, recent studies have called for increased attention to development of a theoretical understanding behind the relationships among ecosystem services. Here, we review the literature on ecosystem services and propose a typology of relationships between ecosystem services based on the role of drivers and the interactions between services. We use this typology to develop three propositions to help drive ecological science towards a better understanding of the relationships among multiple ecosystem services. Research which aims to understand the relationships among multiple ecosystem services and the mechanisms behind these relationships will improve our ability to sustainably manage landscapes to provide multiple ecosystem services.

1,836 citations

Journal ArticleDOI
TL;DR: The tradeoffs that may occur between provisioning services and other ecosystem services and disservices should be evaluated in terms of spatial scale, temporal scale and reversibility, and the potential for ‘win–win’ scenarios increases.
Abstract: Agricultural ecosystems provide humans with food, forage, bioenergy and pharmaceuticals and are essential to human wellbeing. These systems rely on ecosystem services provided by natural ecosystems, including pollination, biological pest control, maintenance of soil structure and fertility, nutrient cycling and hydrological services. Preliminary assessments indicate that the value of these ecosystem services to agriculture is enormous and often underappreciated. Agroecosystems also produce a variety of ecosystem services, such as regulation of soil and water quality, carbon sequestration, support for biodiversity and cultural services. Depending on management practices, agriculture can also be the source of numerous disservices, including loss of wildlife habitat, nutrient runoff, sedimentation of waterways, greenhouse gas emissions, and pesticide poisoning of humans and non-target species. The tradeoffs that may occur between provisioning services and other ecosystem services and disservices should be evaluated in terms of spatial scale, temporal scale and reversibility. As more effective methods for valuing ecosystem services become available, the potential for ‘win–win’ scenarios increases. Under all scenarios, appropriate agricultural management practices are critical to realizing the benefits of ecosystem services and reducing disservices from agricultural activities.

1,732 citations

Journal ArticleDOI
Jules Pretty1
TL;DR: Agricultural sustainability suggests a focus on both genotype improvements through the full range of modern biological approaches and improved understanding of the benefits of ecological and agronomic management, manipulation and redesign.
Abstract: Concerns about sustainability in agricultural systems centre on the need to develop technologies and practices that do not have adverse effects on environmental goods and services, are accessible to and effective for farmers, and lead to improvements in food productivity. Despite great progress in agricultural productivity in the past half-century, with crop and livestock productivity strongly driven by increased use of fertilizers, irrigation water, agricultural machinery, pesticides and land, it would be over-optimistic to assume that these relationships will remain linear in the future. New approaches are needed that will integrate biological and ecological processes into food production, minimize the use of those non-renewable inputs that cause harm to the environment or to the health of farmers and consumers, make productive use of the knowledge and skills of farmers, so substituting human capital for costly external inputs, and make productive use of people's collective capacities to work together to solve common agricultural and natural resource problems, such as for pest, watershed, irrigation, forest and credit management. These principles help to build important capital assets for agricultural systems: natural; social; human; physical; and financial capital. Improving natural capital is a central aim, and dividends can come from making the best use of the genotypes of crops and animals and the ecological conditions under which they are grown or raised. Agricultural sustainability suggests a focus on both genotype improvements through the full range of modern biological approaches and improved understanding of the benefits of ecological and agronomic management, manipulation and redesign. The ecological management of agroecosystems that addresses energy flows, nutrient cycling, population-regulating mechanisms and system resilience can lead to the redesign of agriculture at a landscape scale. Sustainable agriculture outcomes can be positive for food productivity, reduced pesticide use and carbon balances. Significant challenges, however, remain to develop national and international policies to support the wider emergence of more sustainable forms of agricultural production across both industrialized and developing countries.

1,365 citations

Journal ArticleDOI
TL;DR: The authors traces the development of food regime analysis in relation to historical and intellectual trends over the past two decades, arguing that food regime analyses underline agriculture's foundational role in political economy/ecology.
Abstract: Food regime analysis emerged to explain the strategic role of agriculture and food in the construction of the world capitalist economy. It identifies stable periods of capital accumulation associated with particular configurations of geopolitical power, conditioned by forms of agricultural production and consumption relations within and across national spaces. Contradictory relations within food regimes produce crisis, transformation, and transition to successor regimes. This ‘genealogy’ traces the development of food regime analysis in relation to historical and intellectual trends over the past two decades, arguing that food regime analysis underlines agriculture's foundational role in political economy/ecology.

1,010 citations