Author
F. Thomson Leighton
Bio: F. Thomson Leighton is an academic researcher. The author has contributed to research in topics: Sorting algorithm & Parallel algorithm. The author has an hindex of 2, co-authored 2 publications receiving 3153 citations.
Papers
More filters
Book•
01 Sep 1991
TL;DR: This chapter discusses sorting on a Linear Array with a Systolic and Semisystolic Model of Computation, which automates the very labor-intensive and therefore time-heavy and expensive process of manually sorting arrays.
Abstract: Preface Acknowledgments Notation 1 Arrays and Trees 1.1 Elementary Sorting and Counting 1.1.1 Sorting on a Linear Array Assessing the Performance of the Algorithm Sorting N Numbers with Fewer Than N Processors 1.1.2 Sorting in the Bit Model 1.1.3 Lower Bounds 1.1.4 A Counterexample-Counting 1.1.5 Properties of the Fixed-Connection Network Model 1.2 Integer Arithmetic 1.2.1 Carry-Lookahead Addition 1.2.2 Prefix Computations-Segmented Prefix Computations 1.2.3 Carry-Save Addition 1.2.4 Multiplication and Convolution 1.2.5 Division and Newton Iteration 1.3 Matrix Algorithms 1.3.1 Elementary Matrix Products 1.3.2 Algorithms for Triangular Matrices 1.3.3 Algorithms for Tridiagonal Matrices -Odd-Even Reduction -Parallel Prefix Algorithms 1.3.4 Gaussian Elimination 1.3.5 Iterative Methods -Jacobi Relaxation -Gauss-Seidel Relaxation Finite Difference Methods -Multigrid Methods 1.4 Retiming and Systolic Conversion 1.4.1 A Motivating Example-Palindrome Recognition 1.4.2 The Systolic and Semisystolic Model of Computation 1.4.3 Retiming Semisystolic Networks 1.4.4 Conversion of a Semisystolic Network into a Systolic Network 1.4.5 The Special Case of Broadcasting 1.4.6 Retiming the Host 1.4.7 Design by Systolic Conversion-A Summary 1.5 Graph Algorithms 1.5.1 Transitive Closure 1.5.2 Connected Components 1.5.3 Shortest Paths 1.5.4 Breadth-First Spanning Trees 1.5.5 Minimum Weight Spanning Trees 1.6 Sorting Revisited 1.6.1 Odd-Even Transposition Sort on a Linear Array 1.6.2 A Simple Root-N(log N + 1)-Step Sorting Algorithm 1.6.3 A (3 Root- N + o(Root-N))-Step Sorting Algorithm 1.6.4 A Matching Lower Bound 1.7 Packet Routing 1.7.1 Greedy Algorithms 1.7.2 Average-Case Analysis of Greedy Algorithms -Routing N Packets to Random Destinations -Analysis of Dynamic Routing Problems 1.7.3 Randomized Routing Algorithms 1.7.4 Deterministic Algorithms with Small Queues 1.7.5 An Off-line Algorithm 1.7.6 Other Routing Models and Algorithms 1.8 Image Analysis and Computational Geometry 1.8.1 Component-Labelling Algorithms -Levialdi's Algorithm -An O (Root-N)-Step Recursive Algorithm 1.8.2 Computing Hough Transforms 1.8.3 Nearest-Neighbor Algorithms 1.8.4 Finding Convex Hulls 1.9 Higher-Dimensional Arrays 1.9.1 Definitions and Properties 1.9.2 Matrix Multiplication 1.9.3 Sorting 1.9.4 Packet Routing 1.9.5 Simulating High-Dimensional Arrays on Low-Dimensional Arrays 1.10 problems 1.11 Bibliographic Notes 2 Meshes of Trees 2.1 The Two-Dimensional Mesh of Trees 2.1.1 Definition and Properties 2.1.2 Recursive Decomposition 2.1.3 Derivation from KN,N 2.1.4 Variations 2.1.5 Comparison With the Pyramid and Multigrid 2.2 Elementary O(log N)-Step Algorithms 2.2.1 Routing 2.2.2 Sorting 2.2.3 Matrix-Vector Multiplication 2.2.4 Jacobi Relaxation 2.2.5 Pivoting 2.2.6 Convolution 2.2.7 Convex Hull 2.3 Integer Arithmetic 2.3.1 Multiplication 2.3.2 Division and Chinese Remaindering 2.3.3 Related Problems -Iterated Products -Rooting Finding 2.4 Matrix Algorithms 2.4.1 The Three-Dimensional Mesh of Trees 2.4.2 Matrix Multiplication 2.4.3 Inverting Lower Triangular Matrices 2.4.4 Inverting Arbitrary Matrices -Csanky's Algorithm -Inversion by Newton Iteration 2.4.5 Related Problems 2.5 Graph Algorithms 2.5.1 Minimum-Weight Spanning Trees 2.5.2 Connected Components 2.5.3 Transitive Closure 2.5.4 Shortest Paths 2.5.5 Matching Problems 2.6 Fast Evaluation of Straight-Line Code 2.6.1 Addition and Multiplication Over a Semiring 2.6.2 Extension to Codes with Subtraction and Division 2.6.3 Applications 2.7 Higher-Dimensional meshes of Trees 2.7.1 Definitions and Properties 2.7.2 The Shuffle-Tree Graph 2.8 Problems 2.9 Bibliographic Notes 3 Hypercubes and Related Networks 3.1 The Hypercube 3.1.1 Definitions and Properties 3.1.2 Containment of Arrays -Higher-Dimensional Arrays -Non-Power-of-2 Arrays 3.1.3 Containment of Complete Binary Trees 3.1.4 Embeddings of Arbitrary Binary Trees -Embeddings with Dilation 1 and Load O(M over N + log N) -Embeddings with Dilation O(1) and Load O (M over N + 1) -A Review of One-Error-Correcting Codes -Embedding Plog N into Hlog N 3.1.5 Containment of Meshes of Trees 3.1.6 Other Containment Results 3.2 The Butterfly, Cube-Connected-Cycles , and Benes Network 3.2.1 Definitions and Properties 3.2.2 Simulation of Arbitrary Networks 3.2.3 Simulation of Normal Hypercube Algorithms 3.2.4 Some Containment and Simulation Results 3.3 The Shuffle-Exchange and de Bruijn Graphs 3.3.1 Definitions and Properties 3.3.2 The Diaconis Card Tricks 3.3.3 Simulation of Normal Hypercube Algorithms 3.3.4 Similarities with the Butterfly 3.3.5 Some Containment and Simulation Results 3.4 Packet-Routing Algorithms 3.4.1 Definitions and Routing Models 3.4.2 Greedy Routing Algorithms and Worst-Case Problems 3.4.3 Packing, Spreading, and Monotone Routing Problems -Reducing a Many-to-Many Routing Problem to a Many-to-One Routing Problem -Reducing a Routing Problem to a Sorting Problem 3.4.4 The Average-Case Behavior of the Greedy Algorithm -Bounds on Congestion -Bounds on Running Time -Analyzing Non-Predictive Contention-Resolution Protocols 3.4.5 Converting Worst-Case Routing Problems into Average-Case Routing Problems -Hashing -Randomized Routing 3.4.6 Bounding Queue Sizes -Routing on Arbitrary Levelled Networks 3.4.7 Routing with Combining 3.4.8 The Information Dispersal Approach to Routing -Using Information Dispersal to Attain Fault-Tolerance -Finite Fields and Coding Theory 3.4.9 Circuit-Switching Algorithms 3.5 Sorting 3.5.1 Odd-Even Merge Sort -Constructing a Sorting Circuit with Depth log N(log N +1)/2 3.5.2 Sorting Small Sets 3.5.3 A Deterministic O(log N log log N)-Step Sorting Algorithm 3.5.4 Randomized O(log N)-Step Sorting Algorithms -A Circuit with Depth 7.45 log N that Usually Sorts 3.6 Simulating a Parallel Random Access Machine 3.6.1 PRAM Models and Shared Memories 3.6.2 Randomized Simulations Based on Hashing 3.6.3 Deterministic Simulations using Replicated Data 3.6.4 Using Information Dispersal to Improve Performance 3.7 The Fast Fourier Transform 3.7.1 The Algorithm 3.7.2 Implementation on the Butterfly and Shuffle-Exchange Graph 3.7.3 Application to Convolution and Polynomial Arithmetic 3.7.4 Application to Integer Multiplication 3.8 Other Hypercubic Networks 3.8.1 Butterflylike Networks -The Omega Network -The Flip Network -The Baseline and Reverse Baseline Networks -Banyan and Delta Networks -k-ary Butterflies 3.8.2 De Bruijn-Type Networks -The k-ary de Bruijn Graph -The Generalized Shuffle-Exchange Graph 3.9 Problems 3.10 Bibliographic Notes Bibliography Index Lemmas, Theorems, and Corollaries Author Index Subject Index
2,895 citations
Cited by
More filters
Book•
01 Jan 1996
TL;DR: This book familiarizes readers with important problems, algorithms, and impossibility results in the area, and teaches readers how to reason carefully about distributed algorithms-to model them formally, devise precise specifications for their required behavior, prove their correctness, and evaluate their performance with realistic measures.
Abstract: In Distributed Algorithms, Nancy Lynch provides a blueprint for designing, implementing, and analyzing distributed algorithms. She directs her book at a wide audience, including students, programmers, system designers, and researchers.
Distributed Algorithms contains the most significant algorithms and impossibility results in the area, all in a simple automata-theoretic setting. The algorithms are proved correct, and their complexity is analyzed according to precisely defined complexity measures. The problems covered include resource allocation, communication, consensus among distributed processes, data consistency, deadlock detection, leader election, global snapshots, and many others.
The material is organized according to the system model-first by the timing model and then by the interprocess communication mechanism. The material on system models is isolated in separate chapters for easy reference.
The presentation is completely rigorous, yet is intuitive enough for immediate comprehension. This book familiarizes readers with important problems, algorithms, and impossibility results in the area: readers can then recognize the problems when they arise in practice, apply the algorithms to solve them, and use the impossibility results to determine whether problems are unsolvable. The book also provides readers with the basic mathematical tools for designing new algorithms and proving new impossibility results. In addition, it teaches readers how to reason carefully about distributed algorithms-to model them formally, devise precise specifications for their required behavior, prove their correctness, and evaluate their performance with realistic measures.
Table of Contents
1 Introduction
2 Modelling I; Synchronous Network Model
3 Leader Election in a Synchronous Ring
4 Algorithms in General Synchronous Networks
5 Distributed Consensus with Link Failures
6 Distributed Consensus with Process Failures
7 More Consensus Problems
8 Modelling II: Asynchronous System Model
9 Modelling III: Asynchronous Shared Memory Model
10 Mutual Exclusion
11 Resource Allocation
12 Consensus
13 Atomic Objects
14 Modelling IV: Asynchronous Network Model
15 Basic Asynchronous Network Algorithms
16 Synchronizers
17 Shared Memory versus Networks
18 Logical Time
19 Global Snapshots and Stable Properties
20 Network Resource Allocation
21 Asynchronous Networks with Process Failures
22 Data Link Protocols
23 Partially Synchronous System Models
24 Mutual Exclusion with Partial Synchrony
25 Consensus with Partial Synchrony
4,340 citations
20 Apr 2009
TL;DR: This beginning graduate textbook describes both recent achievements and classical results of computational complexity theory and can be used as a reference for self-study for anyone interested in complexity.
Abstract: This beginning graduate textbook describes both recent achievements and classical results of computational complexity theory. Requiring essentially no background apart from mathematical maturity, the book can be used as a reference for self-study for anyone interested in complexity, including physicists, mathematicians, and other scientists, as well as a textbook for a variety of courses and seminars. More than 300 exercises are included with a selected hint set.
2,965 citations
Book•
01 Jan 1996TL;DR: This chapter surveys the theory of two-party communication complexity and presents results regarding the following models of computation: • Finite automata • Turing machines • Decision trees • Ordered binary decision diagrams • VLSI chips • Networks of threshold gates.
Abstract: In this chapter we survey the theory of two-party communication complexity. This field of theoretical computer science aims at studying the following, seemingly very simple, scenario: There are two players Alice who holds an n-bit string x and Bob who holds an n-bit string y. Their goal is to communicate in order to compute the value of some boolean function f(x, y), while exchanging a number of bits which is as small as possible. In the first part of this survey we present, mainly by giving examples, some of the results (and techniques) developed as part of this theory. We put an emphasis on proving lower bounds on the amount of communication that must be exchanged in the above scenario for certain functions f . In the second part of this survey we will exemplify the wide applicability of the results proved in the first part to other areas of computer science. While it is obvious that there are many applications of the results to problems in which communication is involved (e.g., in distributed systems), we concentrate on applications in which communication does not appear explicitly in the statement of the problems. In particular, we present results regarding the following models of computation: • Finite automata • Turing machines • Decision trees • Ordered binary decision diagrams (OBDDs) • VLSI chips • Networks of threshold gates We provide references to many other issues and applications of communication complexity which are not discussed in this survey.
2,004 citations
16 Aug 2009
TL;DR: Experiments in the testbed demonstrate that BCube is fault tolerant and load balancing and it significantly accelerates representative bandwidth-intensive applications.
Abstract: This paper presents BCube, a new network architecture specifically designed for shipping-container based, modular data centers. At the core of the BCube architecture is its server-centric network structure, where servers with multiple network ports connect to multiple layers of COTS (commodity off-the-shelf) mini-switches. Servers act as not only end hosts, but also relay nodes for each other. BCube supports various bandwidth-intensive applications by speeding-up one-to-one, one-to-several, and one-to-all traffic patterns, and by providing high network capacity for all-to-all traffic.BCube exhibits graceful performance degradation as the server and/or switch failure rate increases. This property is of special importance for shipping-container data centers, since once the container is sealed and operational, it becomes very difficult to repair or replace its components.Our implementation experiences show that BCube can be seamlessly integrated with the TCP/IP protocol stack and BCube packet forwarding can be efficiently implemented in both hardware and software. Experiments in our testbed demonstrate that BCube is fault tolerant and load balancing and it significantly accelerates representative bandwidth-intensive applications.
1,639 citations
Book•
01 Oct 1992TL;DR: This book provides an introduction to the design and analysis of parallel algorithms, with the emphasis on the application of the PRAM model of parallel computation, with all its variants, to algorithm analysis.
Abstract: Written by an authority in the field, this book provides an introduction to the design and analysis of parallel algorithms. The emphasis is on the application of the PRAM (parallel random access machine) model of parallel computation, with all its variants, to algorithm analysis. Special attention is given to the selection of relevant data structures and to algorithm design principles that have proved to be useful. Features *Uses PRAM (parallel random access machine) as the model for parallel computation. *Covers all essential classes of parallel algorithms. *Rich exercise sets. *Written by a highly respected author within the field. 0201548569B04062001
1,577 citations