scispace - formally typeset
Search or ask a question
Author

F. Toschi

Other affiliations: University of Bologna
Bio: F. Toschi is an academic researcher from University of Freiburg. The author has contributed to research in topics: Physics & Weakly interacting massive particles. The author has an hindex of 9, co-authored 12 publications receiving 1679 citations. Previous affiliations of F. Toschi include University of Bologna.

Papers
More filters
Journal ArticleDOI
Elena Aprile1, Jelle Aalbers2, F. Agostini3, M. Alfonsi4, L. Althueser5, F. D. Amaro6, M. Anthony1, F. Arneodo7, Laura Baudis8, Boris Bauermeister9, M. L. Benabderrahmane7, T. Berger10, P. A. Breur2, April S. Brown2, Ethan Brown10, S. Bruenner11, Giacomo Bruno7, Ran Budnik12, C. Capelli8, João Cardoso6, D. Cichon11, D. Coderre13, Auke-Pieter Colijn2, Jan Conrad9, Jean-Pierre Cussonneau14, M. P. Decowski2, P. de Perio1, P. Di Gangi3, A. Di Giovanni7, Sara Diglio14, A. Elykov13, G. Eurin11, J. Fei15, A. D. Ferella9, A. Fieguth5, W. Fulgione, A. Gallo Rosso, Michelle Galloway8, F. Gao1, M. Garbini3, C. Geis4, L. Grandi16, Z. Greene1, H. Qiu12, C. Hasterok11, E. Hogenbirk2, J. Howlett1, R. Itay12, F. Joerg11, B. Kaminsky13, Shingo Kazama8, A. Kish8, G. Koltman12, H. Landsman12, R. F. Lang17, L. Levinson12, Qing Lin1, Sebastian Lindemann13, Manfred Lindner11, F. Lombardi15, J. A. M. Lopes6, J. Mahlstedt9, A. Manfredini12, T. Marrodán Undagoitia11, Julien Masbou14, D. Masson17, M. Messina7, K. Micheneau14, Kate C. Miller16, A. Molinario, K. Morå9, M. Murra5, J. Naganoma18, Kaixuan Ni15, Uwe Oberlack4, Bart Pelssers9, F. Piastra8, J. Pienaar16, V. Pizzella11, Guillaume Plante1, R. Podviianiuk, N. Priel12, D. Ramírez García13, L. Rauch11, S. Reichard8, C. Reuter17, B. Riedel16, A. Rizzo1, A. Rocchetti13, N. Rupp11, J.M.F. dos Santos6, Gabriella Sartorelli3, M. Scheibelhut4, S. Schindler4, J. Schreiner11, D. Schulte5, Marc Schumann13, L. Scotto Lavina19, M. Selvi3, P. Shagin18, E. Shockley16, Manuel Gameiro da Silva6, H. Simgen11, Dominique Thers14, F. Toschi3, F. Toschi13, Gian Carlo Trinchero, C. Tunnell16, N. Upole16, M. Vargas5, O. Wack11, Hongwei Wang20, Zirui Wang, Yuehuan Wei15, Ch. Weinheimer5, C. Wittweg5, J. Wulf8, J. Ye15, Yanxi Zhang1, T. Zhu1 
TL;DR: In this article, a search for weakly interacting massive particles (WIMPs) using 278.8 days of data collected with the XENON1T experiment at LNGS is reported.
Abstract: We report on a search for weakly interacting massive particles (WIMPs) using 278.8 days of data collected with the XENON1T experiment at LNGS. XENON1T utilizes a liquid xenon time projection chamber with a fiducial mass of (1.30±0.01) ton, resulting in a 1.0 ton yr exposure. The energy region of interest, [1.4,10.6] keVee ([4.9,40.9] keVnr), exhibits an ultralow electron recoil background rate of [82-3+5(syst)±3(stat)] events/(ton yr keVee). No significant excess over background is found, and a profile likelihood analysis parametrized in spatial and energy dimensions excludes new parameter space for the WIMP-nucleon spin-independent elastic scatter cross section for WIMP masses above 6 GeV/c2, with a minimum of 4.1×10-47 cm2 at 30 GeV/c2 and a 90% confidence level.

1,808 citations

Journal ArticleDOI
Elena Aprile, Jelle Aalbers, F. Agostini, M. Alfonsi, L. Althueser, F. D. Amaro, V. C. Antochi, E. Angelino, J. R. Angevaare, F. Arneodo, D. Barge, Laura Baudis, Boris Bauermeister, L. Bellagamba, M. L. Benabderrahmane, T. Berger, April S. Brown, Ethan Brown, S. Bruenner, Giacomo Bruno, Ran Budnik, C. Capelli, João Cardoso, D. Cichon, B. Cimmino, Michael Ryan Clark, D. Coderre, Auke-Pieter Colijn, Jan Conrad, Jean-Pierre Cussonneau, M. P. Decowski, A. Depoian, P. Di Gangi, A. Di Giovanni, R. Di Stefano, Sara Diglio, A. Elykov, G. Eurin, A. D. Ferella, W. Fulgione, P. Gaemers, R. Gaior, Michelle Galloway, F. Gao, L. Grandi, C. Hasterok, C. Hils, Katsuki Hiraide, L. Hoetzsch, J. Howlett, M. Iacovacci, Yoshitaka Itow, F. Joerg, N. Kato, Shingo Kazama, Masanori Kobayashi, G. Koltman, A. Kopec, H. Landsman, R. F. Lang, L. Levinson, Qing Lin, Sebastian Lindemann, Manfred Lindner, F. Lombardi, J. Long, J.A.M. Lopes, E. López Fune, C. Macolino, Joern Mahlstedt, A. Mancuso, Laura Manenti, A. Manfredini, Fabrizio Marignetti, T. Marrodán Undagoitia, Kalen Martens, Julien Masbou, D. Masson, S. Mastroianni, M. Messina, Kentaro Miuchi, Keita Mizukoshi, A. Molinario, K. Morå, S. Moriyama, Y. Mosbacher, M. Murra, J. Naganoma, Kaixuan Ni, Uwe Oberlack, K. Odgers, J. Palacio, Bart Pelssers, R. Peres, J. Pienaar, V. Pizzella, Guillaume Plante, J. Qin, H. Qiu, D. Ramírez García, S. Reichard, A. Rocchetti, N. Rupp, J.M.F. dos Santos, G. Sartorelli, N. Šarčević, M. Scheibelhut, Jochen Schreiner, D. Schulte, Marc Schumann, L. Scotto Lavina, M. Selvi, F. Semeria, P. Shagin, E. Shockley, Manuel Gameiro da Silva, Hardy Simgen, Atsushi Takeda, C. Therreau, D. Thers, F. Toschi, G. C. Trinchero, C. Tunnell, K. Valerius, M. Vargas, G. Volta, Hulin Wang, Yuehuan Wei, Ch. Weinheimer, M. Weiss, D. Wenz, C. Wittweg, Z. Xu, Masaki Yamashita, J. Ye, Guido Zavattini, Y. Zhang, T. Zhu, J. P. Zopounidis 
TL;DR: In this article, the authors predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs) using the profile construction method, in order to ensure proper coverage.
Abstract: XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential background rate in the energy region of interest, corresponding to (1, 13) keV and (4, 50) keV for electronic and nuclear recoils, amounts to $12.3 \pm 0.6$ (keV t y)$^{-1}$ and $(2.2\pm 0.5)\times 10^{-3}$ (keV t y)$^{-1}$, respectively, in a 4 t fiducial mass. We compute unified confidence intervals using the profile construction method, in order to ensure proper coverage. With the exposure goal of 20 t$\,$y, the expected sensitivity to spin-independent WIMP-nucleon interactions reaches a cross-section of $1.4\times10^{-48}$ cm$^2$ for a 50 GeV/c$^2$ mass WIMP at 90% confidence level, more than one order of magnitude beyond the current best limit, set by XENON1T. In addition, we show that for a 50 GeV/c$^2$ WIMP with cross-sections above $2.6\times10^{-48}$ cm$^2$ ($5.0\times10^{-48}$ cm$^2$) the median XENONnT discovery significance exceeds 3$\sigma$ (5$\sigma$). The expected sensitivity to the spin-dependent WIMP coupling to neutrons (protons) reaches $2.2\times10^{-43}$ cm$^2$ ($6.0\times10^{-42}$ cm$^2$).

171 citations

Posted Content
Elena Aprile, Jelle Aalbers, F. Agostini, M. Alfonsi, L. Althueser, F. D. Amaro, V. C. Antochi, E. Angelino, J. R. Angevaare, F. Arneodo, Derek Barge, Laura Baudis, Boris Bauermeister, L. Bellagamba, M. L. Benabderrahmane, T. Berger, April S. Brown, Ethan Brown, S. Bruenner, Giacomo Bruno, Ran Budnik, C. Capelli, João Cardoso, D. Cichon, B. Cimmino, Michael Ryan Clark, D. Coderre, Auke-Pieter Colijn, Jan Conrad, Jean-Pierre Cussonneau, M. P. Decowski, A. Depoian, P. Di Gangi, A. Di Giovanni, R. Di Stefano, Sara Diglio, A. Elykov, G. Eurin, A. D. Ferella, W. Fulgione, P. Gaemers, R. Gaior, Michelle Galloway, F. Gao, L. Grandi, C. Hasterok, C. Hils, Katsuki Hiraide, L. Hoetzsch, J. Howlett, M. Iacovacci, Yoshitaka Itow, F. Joerg, N. Kato, Shingo Kazama, Masanori Kobayashi, G. Koltman, A. Kopec, H. Landsman, R. F. Lang, L. Levinson, Qing Lin, Sebastian Lindemann, Manfred Lindner, F. Lombardi, J. Long, J.A.M. Lopes, E. López Fune, C. Macolino, Joern Mahlstedt, A. Mancuso, Laura Manenti, A. Manfredini, Fabrizio Marignetti, T. Marrodán Undagoitia, Kalen Martens, Julien Masbou, D. Masson, S. Mastroianni, M. Messina, Kentaro Miuchi, Keita Mizukoshi, A. Molinario, K. Morå, S. Moriyama, Y. Mosbacher, M. Murra, J. Naganoma, Kaixuan Ni, Uwe Oberlack, K. Odgers, J. Palacio, Bart Pelssers, R. Peres, J. Pienaar, V. Pizzella, Guillaume Plante, J. Qin, H. Qiu, D. Ramírez García, S. Reichard, A. Rocchetti, N. Rupp, J.M.F. dos Santos, G. Sartorelli, N. Šarčević, M. Scheibelhut, Jochen Schreiner, D. Schulte, Marc Schumann, L. Scotto Lavina, M. Selvi, F. Semeria, P. Shagin, E. Shockley, Manuel Gameiro da Silva, Hardy Simgen, Atsushi Takeda, C. Therreau, D. Thers, F. Toschi, G. C. Trinchero, C. Tunnell, M. Vargas, G. Volta, Hulin Wang, Yuehuan Wei, C. Weinheimer, M. Weiss, D. Wenz, C. Wittweg, Z. Xu, Masahiro Yamashita, J. Ye, Guido Zavattini, Y. Zhang, T. Zhu, J. P. Zopounidis, Xavier Mougeot 
08 Jul 2020
TL;DR: In this article, the authors report results from searches for new physics with low-energy electronic recoil data recorded with the XENON1T detector, with an exposure of 065 t-y and an unprecedentedly low background rate of $76 \pm 2-stat}$ events/(t y keV) between 1-30 keV.
Abstract: We report results from searches for new physics with low-energy electronic recoil data recorded with the XENON1T detector, with an exposure of 065 t-y and an unprecedentedly low background rate of $76 \pm 2_{stat}$ events/(t y keV) between 1-30 keV An excess over known backgrounds is observed below 7 keV, rising towards lower energies and prominent between 2-3 keV The solar axion model has a 35$\sigma$ significance, and a three-dimensional 90% confidence surface is reported for axion couplings to electrons, photons, and nucleons This surface is inscribed in the cuboid defined by $g_{ae} < 37 \times 10^{-12}$, $g_{ae}g_{an}^{eff} < 46 \times 10^{-18}$, and $g_{ae}g_{a\gamma} < 76\times10^{-22}~{GeV}^{-1}$, and excludes either $g_{ae}=0$ or $g_{ae}g_{a\gamma}=g_{ae}g_{an}^{eff}=0$ The neutrino magnetic moment signal is similarly favored over background at 32$\sigma$ and a confidence interval of $\mu_{ u} \in (14,~29)\times10^{-11}\mu_B$ (90% CL) is reported Both results are in strong tension with stellar constraints The excess can also be explained by $\beta$ decays of tritium at 32$\sigma$ significance with a corresponding tritium concentration in xenon of $(62 \pm 20) \times 10^{-25}$ mol/mol Such a trace amount can be neither confirmed nor excluded with current knowledge of production and reduction mechanisms The significances of the solar axion and neutrino magnetic moment hypotheses are decreased to 21$\sigma$ and 09$\sigma$, respectively, if an unconstrained tritium component is included in the fitting With respect to bosonic dark matter, the excess favors a monoenergetic peak at ($23 \pm 02$) keV (68% CL) with a 30$\sigma$ global (40$\sigma$ local) significance over background This analysis sets the most restrictive direct constraints to date on pseudoscalar and vector bosonic dark matter for most masses between 1 and 210 keV/c$^2$

133 citations

Journal ArticleDOI
Elena Aprile, K. Odgers1, C. Weinheimer2, Jelle Aalbers1, Y. Zhang1, D. Ramírez García1, P.A. Breur3, P.A. Breur1, João Cardoso4, João Cardoso1, V. C. Antochi1, J.A.M. Lopes1, R. Budnik, C. Therreau, A. Elykov, Manuel Gameiro da Silva, M. Garbini, R. Itay, A. D. Ferella, N. Šarčević, M. Murra, A. Molinario, N. Upole, A. Gallo Rosso, J. Naganoma, M. L. Benabderrahmane, Jan Conrad, F. Arneodo, Sebastian Lindemann5, Jean-Pierre Cussonneau, U. Oberlack, J. Howlett, Hongwei Wang5, A. Kish1, Guillaume Plante, A. Rizzo, J. Pienaar, Laura Baudis1, T. Marrodán Undagoitia, R. Peres4, R. Peres1, C. Tunnell, G. Eurin5, M. Anthony5, Kaixuan Ni, N. Priel, B. Pelssers5, K. Morå, G. Sartorelli, L. Scotto Lavina, N. Rupp, Marc Schumann, D. Wenz, Z. Greene, M. Alfonsi, Qing Lin, Alexander Fieguth, B. Riedel, A. Rocchetti, A. Manfredini1, A. Manfredini3, R. F. Lang, R. Podviianiuk, Lorne Levinson, A. Kopec, Hardy Simgen5, F. Gao, D. Masson, E. Hogenbirk, J.M.F. dos Santos, P. de Perio, O. Wack5, Zhou Wang, V. Pizzella, M. P. Decowski, M. Scheibelhut, P. Shagin5, Shingo Kazama, Jochen Schreiner5, P. Di Gangi, D. Thers, A. Di Giovanni, J. Fei, S. Bruenner, C. Wittweg, L. Althueser, Kate C. Miller, K. Micheneau, J. Wulf1, C. Macolino, D. Coderre, E. López Fune, T. Zhu, B. Kaminsky, Michelle Galloway1, D. Cichon, M. Vargas, G. Koltman, L. Grandi, A. P. Colijn, F. Joerg, D. Schulte, Sara Diglio, Ethan Brown, H. Qiu, Julien Masbou, E. Shockley, M. Messina, F. Lombardi, C. Hasterok, F. D. Amaro, Fabrizio Marignetti, T. Berger, J. Ye, W. Fulgione, F. Piastra, Joern Mahlstedt, C. Capelli1, S. Mastroianni, Boris Bauermeister, Giacomo Bruno, M. Selvi, April S. Brown2, M. Iacovacci, Manfred Lindner5, S. Schindler, J. P. Zopounidis, F. Agostini, F. Toschi, Yuehuan Wei, H. Landsman, G. C. Trinchero, S. Reichard1 
24 Apr 2019-Nature
TL;DR: The direct observation of 2νECEC in 124Xe with the XENON1T dark-matter detector is reported, demonstrating that the low background and large target mass of xenon-baseddark-matter detectors make them well suited for measuring rare processes and highlights the broad physics reach of larger next-generation experiments.
Abstract: Two-neutrino double electron capture (2νECEC) is a second-order weak-interaction process with a predicted half-life that surpasses the age of the Universe by many orders of magnitude1. Until now, indications of 2νECEC decays have only been seen for two isotopes2,3,4,5, 78Kr and 130Ba, and instruments with very low background levels are needed to detect them directly with high statistical significance6,7. The 2νECEC half-life is an important observable for nuclear structure models8,9,10,11,12,13,14 and its measurement represents a meaningful step in the search for neutrinoless double electron capture—the detection of which would establish the Majorana nature of the neutrino and would give access to the absolute neutrino mass15,16,17. Here we report the direct observation of 2νECEC in 124Xe with the XENON1T dark-matter detector. The significance of the signal is 4.4 standard deviations and the corresponding half-life of 1.8 × 1022 years (statistical uncertainty, 0.5 × 1022 years; systematic uncertainty, 0.1 × 1022 years) is the longest measured directly so far. This study demonstrates that the low background and large target mass of xenon-based dark-matter detectors make them well suited for measuring rare processes and highlights the broad physics reach of larger next-generation experiments18,19,20.

81 citations

Journal ArticleDOI
Elena Aprile, Jelle Aalbers, F. Agostini, M. Alfonsi, L. Althueser, F. D. Amaro, Matthew Anthony, V. C. Antochi, F. Arneodo, Laura Baudis, Boris Bauermeister, M. L. Benabderrahmane, T. Berger, P. A. Breur, April S. Brown, Ethan Brown, S. Bruenner, Giacomo Bruno, R. Budnik, C. Capelli, João Cardoso, D. Cichon, D. Coderre, A. P. Colijn, Jan Conrad, Jean-Pierre Cussonneau, M. P. Decowski, P. de Perio, P. Di Gangi, A. Di Giovanni, Sara Diglio, A. Elykov, G. Eurin, J. Fei, A. D. Ferella, Alexander Fieguth, W. Fulgione, A. Gallo Rosso, Michelle Galloway, F. Gao, M. Garbini, L. Grandi, Z. Greene, C. Hasterok, E. Hogenbirk, J. Howlett, M. Iacovacci, R. Itay, F. Joerg, Shingo Kazama, B. Kaminsky, A. Kish, G. Koltman, A. Kopec, H. Landsman, R. F. Lang, Lorne Levinson, Qing Lin, Sebastian Lindemann, Manfred Lindner, F. Lombardi, J.A.M. Lopes, E. López Fune, C. Macolino, Joern Mahlstedt, A. Manfredini, Fabrizio Marignetti, T. Marrodán Undagoitia, Julien Masbou, D. Masson, S. Mastroianni, M. Messina, K. Micheneau, Kate C. Miller, A. Molinario, K. Morå, M. Murra, J. Naganoma, Kaixuan Ni, U. Oberlack, K. Odgers, Bart Pelssers, R. Peres, F. Piastra, J. Pienaar, V. Pizzella, Guillaume Plante, R. Podviianiuk, N. Priel, H. Qiu, D. Ramírez García, S. Reichard, B. Riedel, A. Rizzo, A. Rocchetti, N. Rupp, J.M.F. dos Santos, G. Sartorelli, N. Šarčević, M. Scheibelhut, S. Schindler, Jochen Schreiner, D. Schulte, Marc Schumann, L. Scotto Lavina, M. Selvi, P. Shagin, E. Shockley, Manuel Gameiro da Silva, Hardy Simgen, C. Therreau, D. Thers, F. Toschi, G. C. Trinchero, C. Tunnell, N. Upole, M. Vargas, O. Wack, Hulin Wang, Zirui Wang, Yuehuan Wei, C. Weinheimer, D. Wenz, C. Wittweg, J. Wulf, Z. Xu, J. Ye, Y. Zhang, T. Zhu, J. P. Zopounidis 
TL;DR: The first direct observation of two-neutrino double electron capture (2NEECEC) was reported in this paper, with the XENON1T Dark Matter detector.
Abstract: Two-neutrino double electron capture ($2 u$ECEC) is a second-order Weak process with predicted half-lives that surpass the age of the Universe by many orders of magnitude. Until now, indications for $2 u$ECEC decays have only been seen for two isotopes, $^{78}$Kr and $^{130}$Ba, and instruments with very low background levels are needed to detect them directly with high statistical significance. The $2 u$ECEC half-life provides an important input for nuclear structure models and its measurement represents a first step in the search for the neutrinoless double electron capture processes ($0 u$ECEC). A detection of the latter would have implications for the nature of the neutrino and give access to the absolute neutrino mass. Here we report on the first direct observation of $2 u$ECEC in $^{124}$Xe with the XENON1T Dark Matter detector. The significance of the signal is $4.4\sigma$ and the corresponding half-life $T_{1/2}^{2 u\text{ECEC}} = (1.8\pm 0.5_\text{stat}\pm 0.1_\text{sys})\times 10^{22}\;\text{y}$ is the longest ever measured directly. This study demonstrates that the low background and large target mass of xenon-based Dark Matter detectors make them well suited to measuring other rare processes as well, and it highlights the broad physics reach for even larger next-generation experiments.

73 citations


Cited by
More filters
Journal ArticleDOI
Elena Aprile1, Jelle Aalbers, F. Agostini2, F. Agostini3, M. Alfonsi4, L. Althueser5, F. D. Amaro6, V. C. Antochi, E. Angelino2, E. Angelino7, J. R. Angevaare8, F. Arneodo9, D. Barge, Laura Baudis10, Boris Bauermeister, Lorenzo Bellagamba2, M. L. Benabderrahmane9, T. Berger11, April S. Brown10, Ethan Brown11, S. Bruenner, Giacomo Bruno9, Ran Budnik12, C. Capelli10, João Cardoso6, D. Cichon13, B. Cimmino2, M. Clark14, D. Coderre15, Auke-Pieter Colijn, Jan Conrad, Jean-Pierre Cussonneau, M. P. Decowski, A. Depoian14, P. Di Gangi2, A. Di Giovanni9, R. Di Stefano2, Sara Diglio, A. Elykov15, G. Eurin13, A. D. Ferella16, W. Fulgione7, P. Gaemers, R. Gaior, Michelle Galloway10, F. Gao1, L. Grandi, C. Hasterok2, C. Hils4, Katsuki Hiraide17, L. Hoetzsch13, J. Howlett1, M. Iacovacci2, Yoshitaka Itow18, F. Joerg13, N. Kato17, Shingo Kazama18, Masanori Kobayashi1, G. Koltman12, A. Kopec14, H. Landsman12, R. F. Lang14, L. Levinson12, Qing Lin1, Sebastian Lindemann15, Manfred Lindner13, F. Lombardi6, J. Long, J. A. M. Lopes6, E. López Fune, C. Macolino, Joern Mahlstedt, A. Mancuso2, Laura Manenti9, A. Manfredini10, F. Marignetti2, T. Marrodán Undagoitia13, K. Martens17, Julien Masbou, D. Masson15, S. Mastroianni2, M. Messina, Kentaro Miuchi19, K. Mizukoshi19, A. Molinario, K. Morå1, S. Moriyama17, Y. Mosbacher12, M. Murra5, J. Naganoma, Kaixuan Ni20, Uwe Oberlack4, K. Odgers11, J. Palacio13, Bart Pelssers, R. Peres10, J. Pienaar21, V. Pizzella13, Guillaume Plante1, J. Qin14, H. Qiu12, D. Ramírez García15, S. Reichard10, A. Rocchetti15, N. Rupp13, J.M.F. dos Santos6, Gabriella Sartorelli2, N. Šarčević15, M. Scheibelhut4, J. Schreiner13, D. Schulte5, Marc Schumann15, L. Scotto Lavina, M. Selvi2, F. Semeria2, P. Shagin22, E. Shockley21, Manuel Gameiro da Silva6, H. Simgen13, A. Takeda18, C. Therreau, Dominique Thers, F. Toschi15, Gian Carlo Trinchero2, C. Tunnell22, M. Vargas5, G. Volta10, Hongwei Wang23, Yuehuan Wei20, Ch. Weinheimer5, M. Weiss12, D. Wenz4, C. Wittweg5, Z. Xu1, Masaki Yamashita18, J. Ye20, Guido Zavattini2, Yanxi Zhang1, T. Zhu1, J. P. Zopounidis, Xavier Mougeot 
TL;DR: In this article, the XENON1T data was used for searches for new physics with low-energy electronic recoil data recorded with the Xenon1T detector, which enabled one of the most sensitive searches for solar axions, an enhanced neutrino magnetic moment using solar neutrinos, and bosonic dark matter.
Abstract: We report results from searches for new physics with low-energy electronic recoil data recorded with the XENON1T detector. With an exposure of 0.65 tonne-years and an unprecedentedly low background rate of 76±2stat events/(tonne×year×keV) between 1 and 30 keV, the data enable one of the most sensitive searches for solar axions, an enhanced neutrino magnetic moment using solar neutrinos, and bosonic dark matter. An excess over known backgrounds is observed at low energies and most prominent between 2 and 3 keV. The solar axion model has a 3.4σ significance, and a three-dimensional 90% confidence surface is reported for axion couplings to electrons, photons, and nucleons. This surface is inscribed in the cuboid defined by gae<3.8×10-12, gaeganeff<4.8×10-18, and gaegaγ<7.7×10-22 GeV-1, and excludes either gae=0 or gaegaγ=gaeganeff=0. The neutrino magnetic moment signal is similarly favored over background at 3.2σ, and a confidence interval of μν∈(1.4,2.9)×10-11 μB (90% C.L.) is reported. Both results are in strong tension with stellar constraints. The excess can also be explained by β decays of tritium at 3.2σ significance with a corresponding tritium concentration in xenon of (6.2±2.0)×10-25 mol/mol. Such a trace amount can neither be confirmed nor excluded with current knowledge of its production and reduction mechanisms. The significances of the solar axion and neutrino magnetic moment hypotheses are decreased to 2.0σ and 0.9σ, respectively, if an unconstrained tritium component is included in the fitting. With respect to bosonic dark matter, the excess favors a monoenergetic peak at (2.3±0.2) keV (68% C.L.) with a 3.0σ global (4.0σ local) significance over background. This analysis sets the most restrictive direct constraints to date on pseudoscalar and vector bosonic dark matter for most masses between 1 and 210 keV/c2. We also consider the possibility that Ar37 may be present in the detector, yielding a 2.82 keV peak from electron capture. Contrary to tritium, the Ar37 concentration can be tightly constrained and is found to be negligible.

452 citations

Journal ArticleDOI
Elena Aprile1, Jelle Aalbers2, F. Agostini3, M. Alfonsi4, L. Althueser5, F. D. Amaro6, V. C. Antochi2, E. Angelino7, F. Arneodo8, D. Barge2, Laura Baudis9, Boris Bauermeister2, L. Bellagamba3, M. L. Benabderrahmane8, T. Berger10, P. A. Breur11, April S. Brown9, Ethan Brown10, S. Bruenner12, Giacomo Bruno8, Ran Budnik13, C. Capelli9, João Cardoso6, D. Cichon12, D. Coderre14, Auke-Pieter Colijn11, Jan Conrad2, Jean-Pierre Cussonneau15, M. P. Decowski11, P. de Perio1, A. Depoian16, P. Di Gangi3, A. Di Giovanni8, Sara Diglio15, A. Elykov14, G. Eurin12, J. Fei17, A. D. Ferella2, A. Fieguth5, W. Fulgione7, P. Gaemers11, A. Gallo Rosso, Michelle Galloway9, F. Gao1, M. Garbini3, L. Grandi18, Z. Greene1, C. Hasterok12, C. Hils4, E. Hogenbirk11, J. Howlett1, M. Iacovacci, R. Itay13, F. Joerg12, Shingo Kazama19, A. Kish9, Masanori Kobayashi1, G. Koltman13, A. Kopec16, H. Landsman13, R. F. Lang16, L. Levinson13, Qing Lin1, Sebastian Lindemann14, Manfred Lindner12, F. Lombardi17, F. Lombardi6, J. A. M. Lopes6, E. López Fune20, C. Macolino21, J. Mahlstedt2, A. Manfredini13, A. Manfredini9, Fabrizio Marignetti, T. Marrodán Undagoitia12, Julien Masbou15, S. Mastroianni, M. Messina8, K. Micheneau15, Kate C. Miller18, A. Molinario, K. Morå2, Y. Mosbacher13, M. Murra5, J. Naganoma22, Kaixuan Ni17, Uwe Oberlack4, K. Odgers10, J. Palacio15, Bart Pelssers2, R. Peres9, J. Pienaar18, V. Pizzella12, Guillaume Plante1, R. Podviianiuk, J. Qin16, H. Qiu13, D. Ramírez García14, S. Reichard9, B. Riedel18, A. Rocchetti14, N. Rupp12, J.M.F. dos Santos6, Gabriella Sartorelli3, N. Šarčević14, M. Scheibelhut4, S. Schindler4, J. Schreiner12, D. Schulte5, Marc Schumann14, L. Scotto Lavina20, M. Selvi3, P. Shagin22, E. Shockley18, Manuel Gameiro da Silva6, H. Simgen12, C. Therreau15, Dominique Thers15, F. Toschi14, Gian Carlo Trinchero7, C. Tunnell22, N. Upole18, M. Vargas5, G. Volta9, O. Wack12, Hongwei Wang23, Yuehuan Wei17, Ch. Weinheimer5, D. Wenz4, C. Wittweg5, J. Wulf9, J. Ye17, Yanxi Zhang1, T. Zhu1, J. P. Zopounidis20 
TL;DR: Constraints on light dark matter (DM) models using ionization signals in the XENON1T experiment are reported, and no DM or CEvNS detection may be claimed because the authors cannot model all of their backgrounds.
Abstract: We report constraints on light dark matter (DM) models using ionization signals in the XENON1T experiment. We mitigate backgrounds with strong event selections, rather than requiring a scintillation signal, leaving an effective exposure of (22±3) tonne day. Above ∼0.4 keVee, we observe 30 MeV/c2, and absorption of dark photons and axionlike particles for mχ within 0.186–1 keV/c2.

412 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the analysis of one detector operated in the first run of CRESST-III (05/2016-02/2018) achieving a nuclear recoil threshold of 30.1 eV. This result was obtained with a 23.6 g CaWO4 crystal operated as a cryogenic scintillating calorimeter.
Abstract: The CRESST experiment is a direct dark matter search which aims to measure interactions of potential dark matter particles in an Earth-bound detector. With the current stage, CRESST-III, we focus on a low energy threshold for increased sensitivity towards light dark matter particles. In this paper we describe the analysis of one detector operated in the first run of CRESST-III (05/2016-02/2018) achieving a nuclear recoil threshold of 30.1 eV. This result was obtained with a 23.6 g CaWO4 crystal operated as a cryogenic scintillating calorimeter in the CRESST setup at the Laboratori Nazionali del Gran Sasso (LNGS). Both the primary phonon (heat) signal and the simultaneously emitted scintillation light, which is absorbed in a separate silicon-on-sapphire light absorber, are measured with highly sensitive transition edge sensors operated at similar to 15 mK. The unique combination of these sensors with the light element oxygen present in our target yields sensitivity to dark matter particle masses as low as 160 MeV/c(2).

349 citations