scispace - formally typeset
Search or ask a question
Author

F. Toublanc

Bio: F. Toublanc is an academic researcher from University of Toulouse. The author has contributed to research in topics: Oceanography & Bay. The author has an hindex of 1, co-authored 1 publications receiving 68 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: X-TRACK as mentioned in this paper is a post-processing software for satellite altimetry data in coastal ocean areas, which is tailored for extending the use of satellite data to coastal ocean applications and provides freely available along-track sea level anomaly time series that cover today all the coastal oceans.

102 citations

Journal ArticleDOI
TL;DR: In this article , the Gironde River plume in the Bay of Biscay (North-East Atlantic) was studied using a high-resolution modeling approach of the estuary-mouth-shelf continuum.

1 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors examined the contribution of thermal expansion and land ice loss to long-term sea-level changes at interannual-to-multidecadal timescales.
Abstract: Coastal communities are threatened by sea-level changes operating at various spatial scales; global to regional variations are associated with glacier and ice sheet loss and ocean thermal expansion, while smaller coastal-scale variations are also related to atmospheric surges, tides and waves. Here, using 23 years (1993–2015) of global coastal sea-level observations, we examine the contribution of these latter processes to long-term sea-level rise, which, to date, have been relatively less explored. It is found that wave contributions can strongly dampen or enhance the effects of thermal expansion and land ice loss on coastal water-level changes at interannual-to-multidecadal timescales. Along the US West Coast, for example, negative wave-induced trends dominate, leading to negative net water-level trends. Accurate estimates of past, present and future coastal sea-level rise therefore need to consider low-frequency contributions of wave set-up and swash. Large-scale sea-level rise is primarily dominated by thermal expansion and ice melt. However, wave processes are found to significantly influence local sea-level trends at the coast, amplifying or reducing steric and eustatic contributions.

187 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the characteristics of sea level variability at the coast focussing on how it differs from the variability in the nearby deep ocean and how it contributes to the historical mean sea level records obtained from tide gauges which are now used routinely in large-scale climate research.
Abstract: We review the characteristics of sea level variability at the coast focussing on how it differs from the variability in the nearby deep ocean. Sea level variability occurs on all timescales, with processes at higher frequencies tending to have a larger magnitude at the coast due to resonance and other dynamics. In the case of some processes, such as the tides, the presence of the coast and the shallow waters of the shelves results in the processes being considerably more complex than offshore. However, ‘coastal variability’ should not always be considered as ‘short spatial scale variability’ but can be the result of signals transmitted along the coast from 1000s km away. Fortunately, thanks to tide gauges being necessarily located at the coast, many aspects of coastal sea level variability can be claimed to be better understood than those in the deep ocean. Nevertheless, certain aspects of coastal variability remain under-researched, including how changes in some processes (e.g., wave setup, river runoff) may have contributed to the historical mean sea level records obtained from tide gauges which are now used routinely in large-scale climate research.

164 citations

Journal ArticleDOI
TL;DR: The issue of sustained measurements of sea level in the coastal zone is examined, first by summarizing the long-term observations from tide gauges, then by showing how those are now complemented by improved satellite altimetry products in the Coastal ocean.
Abstract: We examine the issue of sustained measurements of sea level in the coastal zone, first by summarizing the long-term observations from tide gauges, then showing how those are now complemented by improved satellite altimetry products in the coastal ocean. We present some of the progresses in coastal altimetry, both from dedicated reprocessing of the radar waveforms and from the development of improved corrections for the atmospheric effects. This trend towards better altimetric data at the coast comes also from technological innovations such as Ka-band altimetry and SAR altimetry, and we discuss the advantages deriving from the AltiKa Ka-band altimeter and the SIRAL altimeter on CryoSat-2 that can be operated in SAR mode. A case study along the UK coast demonstrates the good agreement between coastal altimetry and tide gauge observations, with root mean square differences as low as 4 cm at many stations, allowing the characterization of the annual cycle of sea level along the UK coasts. Finally, we examine the evolution of the sea level trend from the open to the coastal ocean along the western coast of Africa, comparing standard and coastally improved products. Different products give different sea level trend profiles, so the recommendation is that additional efforts are needed to study sea level trends in the coastal zone from past and present satellite altimeters. Further improvements are expected from more refined processing and screening of data, but in particular from the constant improvements in the geophysical corrections.

126 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the recent technical advances in processing and the new technological capabilities of satellite radar altimetry in the coastal zone and illustrate the fast-growing use of coastal data sets in coastal sea level research and applications, as highfrequency (tides and storm surge) and long-term sea level change studies.
Abstract: Satellite radar altimetry provides a unique sea level data set that extends over more than 25 years back in time and that has an almost global coverage. However, when approaching the coasts, the extraction of correct sea level estimates is challenging due to corrupted waveforms and to errors in most of the corrections and in some auxiliary information used in the data processing. The development of methods dedicated to the improvement of altimeter data in the coastal zone dates back to the 1990s, but the major progress happened during the last decade thanks to progress in radar technology [e.g., synthetic aperture radar (SAR) mode and Ka-band frequency], improved waveform retracking algorithms, the availability of new/improved corrections (e.g., wet troposphere and tidal models) and processing workflows oriented to the coastal zone. Today, a set of techniques exists for the processing of coastal altimetry data, generally called “coastal altimetry.” They have been used to generate coastal altimetry products. Altimetry is now recognized as part of the integrated observing system devoted to coastal sea level monitoring. In this article, we review the recent technical advances in processing and the new technological capabilities of satellite radar altimetry in the coastal zone. We also illustrate the fast-growing use of coastal altimetry data sets in coastal sea level research and applications, as high-frequency (tides and storm surge) and long-term sea level change studies.

96 citations

Journal ArticleDOI
TL;DR: In this paper, the main forcing agents acting on coastal regions (e.g., sea level, winds, waves and currents, river runoff, sediment supply and transport, vertical land motions, land use) and the induced coastal response are discussed.
Abstract: Coastal zones are highly dynamical systems affected by a variety of natural and anthropogenic forcing factors that include sea level rise, extreme events, local oceanic and atmospheric processes, ground subsidence, etc. However, so far, they remain poorly monitored on a global scale. To better understand changes affecting world coastal zones and to provide crucial information to decision-makers involved in adaptation to and mitigation of environmental risks, coastal observations of various types need to be collected and analyzed. In this white paper, we first discuss the main forcing agents acting on coastal regions (e.g., sea level, winds, waves and currents, river runoff, sediment supply and transport, vertical land motions, land use) and the induced coastal response (e.g., shoreline position, estuaries morphology, land topography at the land-sea interface and coastal bathymetry). We identify a number of space-based observational needs that have to be addressed in the near future to understand coastal zone evolution. Among these, improved monitoring of coastal sea level by satellite altimetry techniques is recognized as high priority. Classical altimeter data in the coastal zone are adversely affected by land contamination with degraded range and geophysical corrections. However, recent progress in coastal altimetry data processing and multisensor data synergy, offers new perspective to measure sea level change very close to the coast. This issue is discussed in much detail in this paper, including the development of a global coastal sea-level and sea state climate record with mission consistent coastal processing and products dedicated to coastal regimes. Finally, we present a new promising technology based on the use of Signals of Opportunity (SoOp), i.e., communication satellite transmissions that are reutilized as illumination sources in a bistatic radar configuration, for measuring coastal sea level. Since SoOp technology requires only receiver technology to be placed in orbit, small satellite platforms could be used, enabling a constellation to achieve high spatio-temporal resolutions of sea level in coastal zones.

91 citations