scispace - formally typeset
Search or ask a question
Author

F. X. Kneizys

Bio: F. X. Kneizys is an academic researcher. The author has contributed to research in topics: International Standard Atmosphere & Trace gas. The author has an hindex of 2, co-authored 2 publications receiving 945 citations.

Papers
More filters
15 May 1986
TL;DR: In this paper, an atmospheric data base consisting of volume mixing ratios (o 0 to 12okm) for twenty eight (28) minor and trace gases has been assembled for use with spectral radiance transmittance models.
Abstract: : An atmospheric data base consisting of volume mixing ratios (o0 to 12okm) for twenty eight (28) minor and trace gases has been assembled for use with spectral radiance transmittance models. Six references atmospheres, each defining temperature, pressure and density as a function of altitude (selected from the U.S. Standard Supplements, 1966 and the U.S. Standard Atmosphere, 1976) provide a range of climatological choices. Analogous zonal-mean descriptions for 2O, O3, N2O, CO, and CH4 have been subsequently adapted from satellite data and/or dynamical-photochemical analyses. The remaining species are defined by single profiles, usually appropriate for U.S. Standard conditions. Because the entire profile set is preferentially based on available measurements, explicit photochemical consistency between the different species has not been maintained. Keywords: ATMOSPHERIC CONSTITUENTS; TEMPERATURE PROFILES; MODEL ATMOSPHERES.

856 citations

15 May 1986
TL;DR: An atmospheric data base consisting of volume mixing ratios (o 0 to 12 okm) for 28 minor and trace gases was assembled for use with spectral-radiance transmittance models.
Abstract: An atmospheric data base consisting of volume-mixing ratios (o0 to 12 okm) for 28 minor and trace gases was assembled for use with spectral-radiance transmittance models. Six reference atmospheres, each defining temperature, pressure and density as a function of altitude (selected from the U.S. Standard Supplements, 1966 and the U.S. Standard Atmosphere, 1976) provide a range of climatological choices. Analogous zonal-mean descriptions for H/sub 2/O, O/sub 3/, N/sub 2/O, CO, and CH/sub 4/ were subsequently adapted from satellite data and/or dynamical-photochemical analyses. The remaining species are defined by single profiles, usually appropriate for U.S. Standard conditions. Because the entire profile set is preferentially based on available measurements, explicit photochemical consistency between the different species has not been maintained.

132 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The uvspec program, a suite of tools for radiative transfer calculations in the Earth's atmosphere, and additional tools included with libRadtran are described and realistic examples of their use are given.
Abstract: . The libRadtran software package is a suite of tools for radiative transfer calculations in the Earth's atmosphere. Its main tool is the uvspec program. It may be used to compute radiances, irradiances and actinic fluxes in the solar and terrestrial part of the spectrum. The design of uvspec allows simple problems to be easily solved using defaults and included data, hence making it suitable for educational purposes. At the same time the flexibility in how and what input may be specified makes it a powerful and versatile tool for research tasks. The uvspec tool and additional tools included with libRadtran are described and realistic examples of their use are given. The libRadtran software package is available from http://www.libradtran.org.

1,309 citations

Journal ArticleDOI
TL;DR: This survey provides the reader with comprehensive details on the use of space-based optical backhaul links in order to provide high capacity and low cost backhaul solutions.
Abstract: In recent years, free space optical (FSO) communication has gained significant importance owing to its unique features: large bandwidth, license free spectrum, high data rate, easy and quick deployability, less power, and low mass requirements. FSO communication uses optical carrier in the near infrared band to establish either terrestrial links within the Earth’s atmosphere or inter-satellite/deep space links or ground-to-satellite/satellite-to-ground links. It also finds its applications in remote sensing, radio astronomy, military, disaster recovery, last mile access, backhaul for wireless cellular networks, and many more. However, despite of great potential of FSO communication, its performance is limited by the adverse effects (viz., absorption, scattering, and turbulence) of the atmospheric channel. Out of these three effects, the atmospheric turbulence is a major challenge that may lead to serious degradation in the bit error rate performance of the system and make the communication link infeasible. This paper presents a comprehensive survey on various challenges faced by FSO communication system for ground-to-satellite/satellite-to-ground and inter-satellite links. It also provides details of various performance mitigation techniques in order to have high link availability and reliability. The first part of this paper will focus on various types of impairments that pose a serious challenge to the performance of optical communication system for ground-to-satellite/satellite-to-ground and inter-satellite links. The latter part of this paper will provide the reader with an exhaustive review of various techniques both at physical layer as well as at the other layers (link, network, or transport layer) to combat the adverse effects of the atmosphere. It also uniquely presents a recently developed technique using orbital angular momentum for utilizing the high capacity advantage of optical carrier in case of space-based and near-Earth optical communication links. This survey provides the reader with comprehensive details on the use of space-based optical backhaul links in order to provide high capacity and low cost backhaul solutions.

970 citations

Journal ArticleDOI
TL;DR: In this article, an upgraded spectral radiation model called SMARTS2 (Simple Model of the Atmospheric Radiative Transfer of Sunshine) is introduced, based on spectral transmittance functions for the main extinction processes in the cloudless atmosphere: Rayleigh scattering, aerosol extinction, and absorption by ozone, uniformly mixed gases, water vapor, and nitrogen dioxide.

745 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive survey on various challenges faced by free space optical communication (FSO) communication system for ground-to-satellite (G2S) or satellite-toground (S2G) and inter-Satellite (I2I) links.
Abstract: In recent years, free space optical communication has gained significant importance owing to its unique features: large bandwidth, license-free spectrum, high data rate, easy and quick deployability, less power and low mass requirements. FSO communication uses the optical carrier in the near infrared band to establish either terrestrial links within the Earth's atmosphere or inter-satellite or deep space links or ground-to-satellite or satellite-to-ground links. However, despite the great potential of FSO communication, its performance is limited by the adverse effects viz., absorption, scattering, and turbulence of the atmospheric channel. This paper presents a comprehensive survey on various challenges faced by FSO communication system for ground-to-satellite or satellite-to-ground and inter-satellite links. It also provides details of various performance mitigation techniques in order to have high link availability and reliability. The first part of the paper will focus on various types of impairments that pose a serious challenge to the performance of optical communication system for ground-to-satellite or satellite-to-ground and inter-satellite links. The latter part of the paper will provide the reader with an exhaustive review of various techniques both at physical layer as well as at the other layers i.e., link, network or transport layer to combat the adverse effects of the atmosphere. It also uniquely presents a recently developed technique using orbital angular momentum for utilizing the high capacity advantage of the optical carrier in case of space-based and near-Earth optical communication links. This survey provides the reader with comprehensive details on the use of space-based optical backhaul links in order to provide high-capacity and low-cost backhaul solutions.

479 citations