scispace - formally typeset
Search or ask a question
Author

F. Y. Huang

Bio: F. Y. Huang is an academic researcher. The author has contributed to research in topics: Ohmic contact & Wide-bandgap semiconductor. The author has an hindex of 1, co-authored 1 publications receiving 453 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a new metallization process for achieving low resistance ohmic contacts to molecular beam epitaxy grown n−GaN (∼1017 cm−3) using an Al/Ti bilayer metallisation scheme was reported.
Abstract: We report a new metallization process for achieving low resistance ohmic contacts to molecular beam epitaxy grown n‐GaN (∼1017 cm−3) using an Al/Ti bilayer metallization scheme. Four different thin‐film contact metallizations were compared during the investigation, including Au, Al, Ti/Au, and Ti/Al layers. The metals were first deposited via conventional electron‐beam evaporation onto the GaN substrate, and then thermally annealed in a temperature range from 500 to 900 °C in a N2 ambient using rapid thermal annealing techniques. The lowest value for the specific contact resistivity of 8×10−6 Ω cm2, was obtained using Ti/Al metallization with anneals of 900 °C for 30 s. X‐ray diffraction and Auger electron spectroscopy depth profile were employed to investigate the metallurgy of contact formation.

464 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Abstract: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. ...

10,260 citations

Journal ArticleDOI
TL;DR: The role of extended and point defects, and key impurities such as C, O, and H, on the electrical and optical properties of GaN is reviewed in this article, along with the influence of process-induced or grown-in defects and impurities on the device physics.
Abstract: The role of extended and point defects, and key impurities such as C, O, and H, on the electrical and optical properties of GaN is reviewed. Recent progress in the development of high reliability contacts, thermal processing, dry and wet etching techniques, implantation doping and isolation, and gate insulator technology is detailed. Finally, the performance of GaN-based electronic and photonic devices such as field effect transistors, UV detectors, laser diodes, and light-emitting diodes is covered, along with the influence of process-induced or grown-in defects and impurities on the device physics.

1,693 citations

Journal ArticleDOI
TL;DR: In this article, the chemical and thermal stability of epitaxial nitride films is discussed in relation to the problems of deposition processes and the advantages for applications in high-power and high-temperature devices.
Abstract: Recent research results pertaining to InN, GaN and AlN are reviewed, focusing on the different growth techniques of Group III-nitride crystals and epitaxial films, heterostructures and devices. The chemical and thermal stability of epitaxial nitride films is discussed in relation to the problems of deposition processes and the advantages for applications in high-power and high-temperature devices. The development of growth methods like metalorganic chemical vapour deposition and plasma-induced molecular beam epitaxy has resulted in remarkable improvements in the structural, optical and electrical properties. New developments in precursor chemistry, plasma-based nitrogen sources, substrates, the growth of nucleation layers and selective growth are covered. Deposition conditions and methods used to grow alloys for optical bandgap and lattice engineering are introduced. The review is concluded with a description of recent Group III-nitride semiconductor devices such as bright blue and white light-emitting diodes, the first blue-emitting laser, high-power transistors, and a discussion of further applications in surface acoustic wave devices and sensors.

1,386 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive analysis of the developments in ultraviolet (UV) detector technology is described and the current state of the art of different types of semiconductor UV detectors is presented.
Abstract: In this review article a comprehensive analysis of the developments in ultraviolet (UV) detector technology is described. At the beginning, the classification of UV detectors and general requirements imposed on these detectors are presented. Further considerations are restricted to modern semiconductor UV detectors, so the basic theory of photoconductive and photovoltaic detectors is presented in a uniform way convenient for various detector materials. Next, the current state of the art of different types of semiconductor UV detectors is presented. Hitherto, the semiconductor UV detectors have been mainly fabricated using Si. Industries such as the aerospace, automotive, petroleum, and others have continuously provided the impetus pushing the development of fringe technologies which are tolerant of increasingly high temperatures and hostile environments. As a result, the main efforts are currently directed to a new generation of UV detectors fabricated from wide band‐gap semiconductors the most promising ...

1,308 citations

Journal ArticleDOI
TL;DR: The effect of Ar plasma treatment on amorphous indium gallium zinc oxide (a-IGZO) thin films was investigated in this paper, where the authors attempted to reduce the contact resistance between the Pt∕Ti (source/drain electrode) and a-IZO (channel).
Abstract: The effect of Ar plasma treatment on amorphous indium gallium zinc oxide (a-IGZO) thin films was investigated The net electron carrier concentration (1020–1021cm−3) of the a-IGZO thin films dramatically increased upon their exposure to the Ar plasma compared to that (1014cm−3) of the as-deposited thin film The authors attempted to reduce the contact resistance between the Pt∕Ti (source/drain electrode) and a-IGZO (channel) by using the Ar plasma treatment Without the treatment, the a-IGZO thin film transistors (TFTs) with W∕L=50∕4μm exhibited a moderate field-effect mobility (μFE) of 33cm2∕Vs, subthreshold gate swing (S) of 025V∕decade, and Ion∕off ratio of 4×107 The device performance of the a-IGZO TFTs was significantly improved by the Ar plasma treatment As a result, an excellent S value of 019V∕decade and high Ion∕off ratio of 1×108, as well as a high μFE of 91cm2∕Vs, were achieved for the treated a-IGZO TFTs

1,295 citations