scispace - formally typeset
Search or ask a question
Author

Fabian Monrose

Other affiliations: IBM, Columbia University, New York University  ...read more
Bio: Fabian Monrose is an academic researcher from University of North Carolina at Chapel Hill. The author has contributed to research in topics: Password & Encryption. The author has an hindex of 47, co-authored 137 publications receiving 11176 citations. Previous affiliations of Fabian Monrose include IBM & Columbia University.


Papers
More filters
Proceedings Article
23 Aug 1999
TL;DR: This work proposes and evaluates new graphical password schemes that exploit features of graphical input displays to achieve better security than text-based passwords and describes the prototype implementation of one of the schemes on a personal digital assistants (PDAs) namely the Palm PilotTM.
Abstract: In this paper we propose and evaluate new graphical password schemes that exploit features of graphical input displays to achieve better security than text-based passwords. Graphical input devices enable the user to decouple the position of inputs from the temporal order in which those inputs occur, and we show that this decoupling can be used to generate password schemes with substantially larger (memorable) password spaces. In order to evaluate the security of one of our schemes, we devise a novel way to capture a subset of the "memorable" passwords that, we believe, is itself a contribution. In this work we are primarily motivated by devices such as personal digital assistants (PDAs) that offer graphical input capabilities via a stylus, and we describe our prototype implementation of one of our password schemes on such a PDA, namely the Palm PilotTM.

869 citations

Journal ArticleDOI
TL;DR: This paper examines an emerging non-static biometric technique that aims to identify users based on analyzing habitual rhythm patterns in the way they type in an effort to confront the new threats unveiled by the networking revolution.

772 citations

Proceedings ArticleDOI
25 Oct 2006
TL;DR: This paper attempts to clear the fog surrounding botnets by constructing a multifaceted and distributed measurement infrastructure, which shows that botnets represent a major contributor to unwanted Internet traffic and provides deep insights that may facilitate further research to curtail this phenomenon.
Abstract: The academic community has long acknowledged the existence of malicious botnets, however to date, very little is known about the behavior of these distributed computing platforms. To the best of our knowledge, botnet behavior has never been methodically studied, botnet prevalence on the Internet is mostly a mystery, and the botnet life cycle has yet to be modeled. Uncertainty abounds. In this paper, we attempt to clear the fog surrounding botnets by constructing a multifaceted and distributed measurement infrastructure. Throughout a period of more than three months, we used this infrastructure to track 192 unique IRC botnets of size ranging from a few hundred to several thousand infected end-hosts. Our results show that botnets represent a major contributor to unwanted Internet traffic - 27% of all malicious connection attempts observed from our distributed darknet can be directly attributed to botnet-related spreading activity. Furthermore, we discovered evidence of botnet infections in 11% of the 800,000 DNS domains we examined, indicating a high diversity among botnet victims. Taken as a whole, these results not only highlight the prominence of botnets, but also provide deep insights that may facilitate further research to curtail this phenomenon.

661 citations

Proceedings Article
28 Jul 2008
TL;DR: The relationship between the user browsing habits and exposure to malware, the techniques used to lure the user into the malware distribution networks, and the different properties of these networks are studied.
Abstract: As the web continues to play an ever increasing role in information exchange, so too is it becoming the prevailing platform for infecting vulnerable hosts. In this paper, we provide a detailed study of the pervasiveness of so-called drive-by downloads on the Internet. Drive-by downloads are caused by URLs that attempt to exploit their visitors and cause malware to be installed and run automatically. Over a period of 10 months we processed billions of URLs, and our results shows that a non-trivial amount, of over 3 million malicious URLs, initiate drive-by downloads. An even more troubling finding is that approximately 1.3% of the incoming search queries to Google's search engine returned at least one URL labeled as malicious in the results page. We also explore several aspects of the drive-by downloads problem. Specifically, we study the relationship between the user browsing habits and exposure to malware, the techniques used to lure the user into the malware distribution networks, and the different properties of these networks.

563 citations

Proceedings ArticleDOI
01 Apr 1997
TL;DR: A database of 42 profiles was constructed based on keystroke patterns gathered from various users performing structured and unstructured tasks, and a toolkit for analyzing system performance under varying criteria is presented.
Abstract: In an effort to confront the challenges brought forward by the networking revolution of the past few years, we present improved techniques for authorized access to computer system resources and data. More than ever before, the Internet is changing computing as we know it. The possibilities of this global network seem limitless; unfortunately, with this global access comes increased chances of malicious attack and intrusion. Alternatives to traditional access control measures are in high demand. In what follows we present one such alternative: computer access via keystroke dynamics. A database of 42 profiles was constructed based on keystroke patterns gathered from various users performing structured and unstructured tasks. We study the performance of a system for recognition of these users, and present a toolkit for analyzing system performance under varying criteria.

524 citations


Cited by
More filters
01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

Book
10 Mar 2005
TL;DR: This unique reference work is an absolutely essential resource for all biometric security professionals, researchers, and systems administrators.
Abstract: A major new professional reference work on fingerprint security systems and technology from leading international researchers in the field Handbook provides authoritative and comprehensive coverage of all major topics, concepts, and methods for fingerprint security systems This unique reference work is an absolutely essential resource for all biometric security professionals, researchers, and systems administrators

3,821 citations

Book ChapterDOI
22 May 2005
TL;DR: In this article, a new type of identity-based encryption called Fuzzy Identity-Based Encryption (IBE) was introduced, where an identity is viewed as set of descriptive attributes, and a private key for an identity can decrypt a ciphertext encrypted with an identity if and only if the identities are close to each other as measured by the set overlap distance metric.
Abstract: We introduce a new type of Identity-Based Encryption (IBE) scheme that we call Fuzzy Identity-Based Encryption. In Fuzzy IBE we view an identity as set of descriptive attributes. A Fuzzy IBE scheme allows for a private key for an identity, ω, to decrypt a ciphertext encrypted with an identity, ω ′, if and only if the identities ω and ω ′ are close to each other as measured by the “set overlap” distance metric. A Fuzzy IBE scheme can be applied to enable encryption using biometric inputs as identities; the error-tolerance property of a Fuzzy IBE scheme is precisely what allows for the use of biometric identities, which inherently will have some noise each time they are sampled. Additionally, we show that Fuzzy-IBE can be used for a type of application that we term “attribute-based encryption”. In this paper we present two constructions of Fuzzy IBE schemes. Our constructions can be viewed as an Identity-Based Encryption of a message under several attributes that compose a (fuzzy) identity. Our IBE schemes are both error-tolerant and secure against collusion attacks. Additionally, our basic construction does not use random oracles. We prove the security of our schemes under the Selective-ID security model.

3,610 citations

Posted Content
TL;DR: In this paper, a new type of identity-based encryption called Fuzzy Identity-Based Encryption (IBE) was introduced, where an identity is viewed as set of descriptive attributes, and a private key for an identity can decrypt a ciphertext encrypted with an identity if and only if the identities are close to each other as measured by the set overlap distance metric.
Abstract: We introduce a new type of Identity-Based Encryption (IBE) scheme that we call Fuzzy Identity-Based Encryption. In Fuzzy IBE we view an identity as set of descriptive attributes. A Fuzzy IBE scheme allows for a private key for an identity, ω, to decrypt a ciphertext encrypted with an identity, ω ′, if and only if the identities ω and ω ′ are close to each other as measured by the “set overlap” distance metric. A Fuzzy IBE scheme can be applied to enable encryption using biometric inputs as identities; the error-tolerance property of a Fuzzy IBE scheme is precisely what allows for the use of biometric identities, which inherently will have some noise each time they are sampled. Additionally, we show that Fuzzy-IBE can be used for a type of application that we term “attribute-based encryption”. In this paper we present two constructions of Fuzzy IBE schemes. Our constructions can be viewed as an Identity-Based Encryption of a message under several attributes that compose a (fuzzy) identity. Our IBE schemes are both error-tolerant and secure against collusion attacks. Additionally, our basic construction does not use random oracles. We prove the security of our schemes under the Selective-ID security model.

3,128 citations