scispace - formally typeset
Search or ask a question
Author

Fabian Walter

Bio: Fabian Walter is an academic researcher from Max Planck Society. The author has contributed to research in topics: Galaxy & Star formation. The author has an hindex of 146, co-authored 999 publications receiving 83016 citations. Previous affiliations of Fabian Walter include California Institute of Technology & University of Bonn.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a multi-band analysis of the region containing the supergiant HI shell in the nearby dwarf irregular galaxy IC2574 presents evidence of a causal relationship between a central star cluster, the surrounding expanding HI shell, and secondary star formation sites on the rim of the HI shell.
Abstract: A multi-band analysis of the region containing the supergiant HI shell in the nearby dwarf irregular galaxy IC2574 presents evidence of a causal relationship between a central star cluster, the surrounding expanding HI shell, and secondary star formation sites on the rim of the HI shell. Comparisons of the far-UV (FUV, 1521 A), optical broad-band, H-alpha, X-ray, and HI morphologies suggest that the region is in an auspicious moment of star formation triggered by the central stellar cluster. The derived properties of the HI shell, the central stellar cluster, and the star forming regions on the rim support this scenario: The kinematic age of the HI shell is <14 Myr and in agreement with the age of the central stellar cluster derived from the FUV observations (sim 11 Myr). An estimate for the mechanical energy input from SN and stellar winds of the central stellar cluster made from FUV photometry and the derived cluster age is 4.1 x 10^52 erg, roughly a few times higher than the kinetic energy of the HI shell. The requisite energy input needed to create the HI shell, derived in the `standard' fashion from the HI observations (using the numerical models of Chevalier), is 2.6 x 10^53 erg which is almost an order of magnitude higher than the estimated energy input as derived from the FUV data. Given the overwhelming observational evidence that the central cluster is responsible for the expanding HI shell, this discrepancy suggests that the required energy input is overestimated using the `standard' method. This may explain why some other searches for remnant stellar clusters in giant HI holes have been unsuccessful so far. Our observations also show that stellar clusters are indeed able to create supergiant HI shells, even at large galactocentric radii, a scenario which has recently been questioned by a number of authors.

35 citations

Journal ArticleDOI
TL;DR: In this paper, the best sampled CO spectral line energy distribution (SLED) at 6.003 was presented, and analyzed with the radiative transfer code MOLPOP-CEP.
Abstract: We report Atacama Large Millimeter/submillimeter Array (ALMA) observations of CO $(8-7)$, $(9-8)$, $\rm H_{2}O (2_{0,2}-1_{1,1})$ and $\rm OH^{+} (1_{1}-0_{1})$ and NOrthern Extended Millimeter Array (NOEMA) observations of CO $(5-4)$, $(6-5)$, $(12-11)$ and $(13-12)$ towards the $z = 6.003$ quasar SDSS J231038.88+185519.7, aiming to probe the physical conditions of the molecular gas content of this source. We present the best sampled CO spectral line energy distribution (SLED) at $z = 6.003$, and analyzed it with the radiative transfer code MOLPOP-CEP. Fitting the CO SLED to a one-component model indicates a kinetic temperature $T_{\rm kin} = 228 \ \rm K$, molecular gas density $log (n(\rm H_{2})/\rm cm^{-3}$ )=4.75, and CO column density $log(N(\rm CO)/\rm cm^{-2}) =17.5$, although a two-component model better fits the data. In either case, the CO SLED is dominated by a "warm" and "dense" component. Compared to samples of local (Ultra) Luminous Infrared Galaxies ((U)LIRGs), starburst galaxies and high redshift Submillimeter Galaxies (SMGs), J2310+1855 exhibits higher CO excitation at ($J \geq 8$), like other high redshift quasars. The high CO excitation, together with the enhanced $L_{\rm H_{2}O}/ L_{IR} $, $L_{\rm H_{2}O}/ L_{CO} $ and $L_{OH^{+}}/L_{\rm H_{2}O} $ ratios, suggests that besides the UV radiation from young massive stars, other mechanisms such as shocks, cosmic rays and X-rays might also be responsible for the heating and ionization of the molecular gas. In the nuclear region probed by the molecular emissions lines, any of these mechanisms might be present due to the powerful quasar and the starburst activity.

35 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented deep H i observations obtained with the NRAO Green Bank Telescope of an area measuring 4° × 4° around NGC 2403, revealing a low column density, extended cloud outside the main H i disk, about 17' (~ 16 kpc or 2 R25) to the NW of the center of the galaxy.
Abstract: Observed H i accretion around nearby galaxies can only account for a fraction of the gas supply needed to sustain the currently observed star formation rates. It is possible that additional accretion occurs in the form of low column density cold flows, as predicted by numerical simulations of galaxy formation. To constrain the presence and properties of such flows, we present deep H i observations obtained with the NRAO Green Bank Telescope of an area measuring 4° × 4° around NGC 2403. These observations, with a 5σ detection limit of 2.4 × 1018 cm-2 over a 20 km s-1 linewidth, reveal a low column density, extended cloud outside the main H i disk, about 17' (~ 16 kpc or ~ 2 R25) to the NW of the center of the galaxy. The total H i mass of the cloud is 6.3 × 106 M⊙, or 0.15 percent of the total H i mass of NGC 2403. The cloud is associated with an 8 kpc anomalous-velocity H i filament in the inner disk, that was previously observed in deep VLA observations. We discuss several scenarios for the origin of the cloud, and conclude that it is either accreting from the intergalactic medium, or is the result of a minor interaction with a neigboring dwarf galaxy. The reduced datacubes (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/569/A68

35 citations

Journal ArticleDOI
TL;DR: In this article, a 3° × 3°, 105-pointing, high-resolution neutral hydrogen (H I) mosaic of the M81 galaxy triplet, including the main galaxies M81, M82, and NGC 3077, as well as dwarf galaxy NGC 2976, was obtained with the Very Large Array C and D arrays.
Abstract: We present a 3° × 3°, 105-pointing, high-resolution neutral hydrogen (H I) mosaic of the M81 galaxy triplet, (including the main galaxies M81, M82, and NGC 3077, as well as dwarf galaxy NGC 2976) obtained with the Very Large Array C and D arrays. This H I synthesis mosaic uniformly covers the entire area and velocity range of the triplet. The observations have a resolution of ∼20″ or ∼420 pc. The data reveal many small-scale anomalous velocity features highlighting the complexity of the interacting M81 triplet. We compare our data with Green Bank Telescope observations of the same area. This comparison provides evidence for the presence of a substantial reservoir of low-column density gas in the northern part of the triplet, probably associated with M82. Such a reservoir is not found in the southern part. We report a number of newly discovered kpc-sized low-mass H I clouds with H I masses of a few times 106 M ☉. A detailed analysis of their velocity widths show that their dynamical masses are much larger than their baryonic masses, which could indicate the presence of dark matter if the clouds are rotationally supported. However, due to their spatial and kinematical association with H I tidal features, it is more likely that the velocity widths indicate tidal effects or streaming motions. We do not find any clouds that are not associated with tidal features down to an H I mass limit of a few times 104 M ☉. We compare the H I column densities with resolved stellar density maps and find a star formation threshold around 3─6 × 1020 cm−2. We investigate the widths of the H I velocity profiles in the triplet and find that extreme velocity dispersions can be explained by a superposition of multiple components along the line of sight near M81 as well as winds or outflows around M82. The velocity dispersions found are high enough that these processes could explain the linewidths of damped-Lyα absorbers observed at high redshift.

35 citations

Journal ArticleDOI
TL;DR: Using the IRAM 30 m telescope and the Plateau de Bure interferometer, this article detected the C I((3)P(2) -> (3) P(1)) and the CO 3-2, 4-3, 6-5, 7-6 transitions as well as the dust continuum at 3 and 1.2 mm towards distant luminous infrared galaxy IRAS F10214+4724 at z = 2.286.
Abstract: Using the IRAM 30 m telescope and the Plateau de Bure interferometer we have detected the C I((3)P(2) -> (3)P(1)) and the CO 3-2, 4-3, 6-5, 7-6 transitions as well as the dust continuum at 3 and 1.2 mm towards the distant luminous infrared galaxy IRAS F10214+4724 at z = 2.286. The C I((3)P(2) -> (3)P(1)) line is detected for the first time towards this source and IRAS F10214+4724 now belongs to a sample of only 3 extragalactic sources at any redshift where both of the carbon fine structure lines have been detected. The source is spatially resolved by our C I((3)P(2) -> (3)P(1)) observation and we detect a velocity gradient along the east-west direction. The CI line ratio allows us to derive a carbon excitation temperature of 42(-9)(+12) K. The carbon excitation in conjunction with the CO ladder and the dust continuum constrain the gas density to n(H(2)) = 10(3.6-4.0) cm(-3) and the kinetic temperature to T(kin) = 45-80 K, similar to the excitation conditions found in nearby starburst galaxies. The rest-frame 360 mu m dust continuum morphology is more compact than the line emitting region, which supports previous findings that the far infrared luminosity arises from regions closer to the active galactic nucleus at the center of this system.

35 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The second Gaia data release, Gaia DR2 as mentioned in this paper, is a major advance with respect to Gaia DR1 in terms of completeness, performance, and richness of the data products.
Abstract: Context. We present the second Gaia data release, Gaia DR2, consisting of astrometry, photometry, radial velocities, and information on astrophysical parameters and variability, for sources brighter than magnitude 21. In addition epoch astrometry and photometry are provided for a modest sample of minor planets in the solar system. Aims: A summary of the contents of Gaia DR2 is presented, accompanied by a discussion on the differences with respect to Gaia DR1 and an overview of the main limitations which are still present in the survey. Recommendations are made on the responsible use of Gaia DR2 results. Methods: The raw data collected with the Gaia instruments during the first 22 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into this second data release, which represents a major advance with respect to Gaia DR1 in terms of completeness, performance, and richness of the data products. Results: Gaia DR2 contains celestial positions and the apparent brightness in G for approximately 1.7 billion sources. For 1.3 billion of those sources, parallaxes and proper motions are in addition available. The sample of sources for which variability information is provided is expanded to 0.5 million stars. This data release contains four new elements: broad-band colour information in the form of the apparent brightness in the GBP (330-680 nm) and GRP (630-1050 nm) bands is available for 1.4 billion sources; median radial velocities for some 7 million sources are presented; for between 77 and 161 million sources estimates are provided of the stellar effective temperature, extinction, reddening, and radius and luminosity; and for a pre-selected list of 14 000 minor planets in the solar system epoch astrometry and photometry are presented. Finally, Gaia DR2 also represents a new materialisation of the celestial reference frame in the optical, the Gaia-CRF2, which is the first optical reference frame based solely on extragalactic sources. There are notable changes in the photometric system and the catalogue source list with respect to Gaia DR1, and we stress the need to consider the two data releases as independent. Conclusions: Gaia DR2 represents a major achievement for the Gaia mission, delivering on the long standing promise to provide parallaxes and proper motions for over 1 billion stars, and representing a first step in the availability of complementary radial velocity and source astrophysical information for a sample of stars in the Gaia survey which covers a very substantial fraction of the volume of our galaxy.

8,308 citations

Journal ArticleDOI
01 Dec 2010
TL;DR: The Wide-field Infrared Survey Explorer (WISE) is mapping the whole sky following its launch on 14 December 2009 and completed its first full coverage of the sky on July 17 as discussed by the authors.
Abstract: The all sky surveys done by the Palomar Observatory Schmidt, the European Southern Observatory Schmidt, and the United Kingdom Schmidt, the InfraRed Astronomical Satellite and the 2 Micron All Sky Survey have proven to be extremely useful tools for astronomy with value that lasts for decades. The Wide-field Infrared Survey Explorer is mapping the whole sky following its launch on 14 December 2009. WISE began surveying the sky on 14 Jan 2010 and completed its first full coverage of the sky on July 17. The survey will continue to cover the sky a second time until the cryogen is exhausted (anticipated in November 2010). WISE is achieving 5 sigma point source sensitivities better than 0.08, 0.11, 1 and 6 mJy in unconfused regions on the ecliptic in bands centered at wavelengths of 3.4, 4.6, 12 and 22 micrometers. Sensitivity improves toward the ecliptic poles due to denser coverage and lower zodiacal background. The angular resolution is 6.1", 6.4", 6.5" and 12.0" at 3.4, 4.6, 12 and 22 micrometers, and the astrometric precision for high SNR sources is better than 0.15".

7,182 citations

Journal ArticleDOI
Nabila Aghanim1, Yashar Akrami2, Yashar Akrami3, Yashar Akrami4  +229 moreInstitutions (70)
TL;DR: In this article, the authors present cosmological parameter results from the full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction.
Abstract: We present cosmological parameter results from the final full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction Compared to the 2015 results, improved measurements of large-scale polarization allow the reionization optical depth to be measured with higher precision, leading to significant gains in the precision of other correlated parameters Improved modelling of the small-scale polarization leads to more robust constraints on manyparameters,withresidualmodellinguncertaintiesestimatedtoaffectthemonlyatthe05σlevelWefindgoodconsistencywiththestandard spatially-flat6-parameter ΛCDMcosmologyhavingapower-lawspectrumofadiabaticscalarperturbations(denoted“base ΛCDM”inthispaper), from polarization, temperature, and lensing, separately and in combination A combined analysis gives dark matter density Ωch2 = 0120±0001, baryon density Ωbh2 = 00224±00001, scalar spectral index ns = 0965±0004, and optical depth τ = 0054±0007 (in this abstract we quote 68% confidence regions on measured parameters and 95% on upper limits) The angular acoustic scale is measured to 003% precision, with 100θ∗ = 10411±00003Theseresultsareonlyweaklydependentonthecosmologicalmodelandremainstable,withsomewhatincreasederrors, in many commonly considered extensions Assuming the base-ΛCDM cosmology, the inferred (model-dependent) late-Universe parameters are: HubbleconstantH0 = (674±05)kms−1Mpc−1;matterdensityparameterΩm = 0315±0007;andmatterfluctuationamplitudeσ8 = 0811±0006 We find no compelling evidence for extensions to the base-ΛCDM model Combining with baryon acoustic oscillation (BAO) measurements (and consideringsingle-parameterextensions)weconstraintheeffectiveextrarelativisticdegreesoffreedomtobe Neff = 299±017,inagreementwith the Standard Model prediction Neff = 3046, and find that the neutrino mass is tightly constrained toPmν < 012 eV The CMB spectra continue to prefer higher lensing amplitudesthan predicted in base ΛCDM at over 2σ, which pulls some parameters that affect thelensing amplitude away from the ΛCDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAOdataThejointconstraintwithBAOmeasurementsonspatialcurvatureisconsistentwithaflatuniverse, ΩK = 0001±0002Alsocombining with Type Ia supernovae (SNe), the dark-energy equation of state parameter is measured to be w0 = −103±003, consistent with a cosmological constant We find no evidence for deviations from a purely power-law primordial spectrum, and combining with data from BAO, BICEP2, and Keck Array data, we place a limit on the tensor-to-scalar ratio r0002 < 006 Standard big-bang nucleosynthesis predictions for the helium and deuterium abundances for the base-ΛCDM cosmology are in excellent agreement with observations The Planck base-ΛCDM results are in good agreement with BAO, SNe, and some galaxy lensing observations, but in slight tension with the Dark Energy Survey’s combined-probe results including galaxy clustering (which prefers lower fluctuation amplitudes or matter density parameters), and in significant, 36σ, tension with local measurements of the Hubble constant (which prefer a higher value) Simple model extensions that can partially resolve these tensions are not favoured by the Planck data

4,688 citations

Journal ArticleDOI
TL;DR: Tests of general relativity at the post-Newtonian level have reached high precision, including the light deflection, the Shapiro time delay, the perihelion advance of Mercury, the Nordtvedt effect in lunar motion, and frame-dragging.
Abstract: The status of experimental tests of general relativity and of theoretical frameworks for analyzing them is reviewed and updated. Einstein’s equivalence principle (EEP) is well supported by experiments such as the Eotvos experiment, tests of local Lorentz invariance and clock experiments. Ongoing tests of EEP and of the inverse square law are searching for new interactions arising from unification or quantum gravity. Tests of general relativity at the post-Newtonian level have reached high precision, including the light deflection, the Shapiro time delay, the perihelion advance of Mercury, the Nordtvedt effect in lunar motion, and frame-dragging. Gravitational wave damping has been detected in an amount that agrees with general relativity to better than half a percent using the Hulse-Taylor binary pulsar, and a growing family of other binary pulsar systems is yielding new tests, especially of strong-field effects. Current and future tests of relativity will center on strong gravity and gravitational waves.

3,394 citations

Journal ArticleDOI
TL;DR: In this article, a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors.
Abstract: On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of $\sim$1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg$^2$ at a luminosity distance of $40^{+8}_{-8}$ Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Msun. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at $\sim$40 Mpc) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over $\sim$10 days. Following early non-detections, X-ray and radio emission were discovered at the transient's position $\sim$9 and $\sim$16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. (Abridged)

3,180 citations