scispace - formally typeset
Search or ask a question
Author

Fabian Walter

Bio: Fabian Walter is an academic researcher from Max Planck Society. The author has contributed to research in topics: Galaxy & Star formation. The author has an hindex of 146, co-authored 999 publications receiving 83016 citations. Previous affiliations of Fabian Walter include California Institute of Technology & University of Bonn.


Papers
More filters
Posted Content
TL;DR: In this article, a high-resolution HI synthesis survey of the outer regions of the nearby M81 group is presented, where internal (galactic) and external (group-related) evolution processes can be studied simultaneously in great detail.
Abstract: Results are presented from a wide area, high resolution HI synthesis survey of the outer regions of the nearby M81 group, where internal (galactic) and external (group-related) evolution processes can be studied simultaneously in great detail. The survey encompasses the star forming dwarf galaxies M81dwA, UGC4483, and HoII, where evidence of ram pressure stripping was recently discovered. The data do not reveal any intergalactic HI, but the outer parts of HoII are reminiscent of tidal tails. We argue however that those structures are equally consistent with the latest ram pressure models including cooling. The case for a hot intergalactic medium in this poor, spiral-only group is thus still open. The survey also puts tight constraints on possible counterparts to the local high velocity cloud population in an external group, reaching a 3 sigma column density of 10^19 atom/cm^2 and a 6 sigma limiting mass of 1.5x10^5 M_sun.

5 citations

Journal ArticleDOI
TL;DR: In this article, the authors detect broad wings of the line tracing a quasar-driven massive outflow, which is likely tracing the long sought quasar feedback, already at work in the early Universe.
Abstract: Most theoretical models invoke quasar driven outflows to quench star formation in massive galaxies, this feedback mechanism is required to account for the population of old and passive galaxies observed in the local universe. The discovery of massive, old and passive galaxies at z=2, implies that such quasar feedback onto the host galaxy must have been at work very early on, close to the reionization epoch. We have observed the [CII]158um transition in SDSSJ114816.64+525150.3 that, at z=6.4189, is one of the most distant quasars known. We detect broad wings of the line tracing a quasar-driven massive outflow. This is the most distant massive outflow ever detected and is likely tracing the long sought quasar feedback, already at work in the early Universe. The outflow is marginally resolved on scales of about 16 kpc, implying that the outflow can really affect the whole galaxy, as required by quasar feedback models. The inferred outflow rate, dM/dt > 3500 Msun/yr, is the highest ever found. At this rate the outflow can clean the gas in the host galaxy, and therefore quench star formation, in a few million years.

5 citations

Journal ArticleDOI
TL;DR: In this paper, high-resolution (0.3") Very Large Array (VLA) imaging of the molecular gas in the host galaxy of the high redshift quasar PSS J2322+1944 (z=4.12) is presented.
Abstract: We present high-resolution (0.3") Very Large Array (VLA) imaging of the molecular gas in the host galaxy of the high redshift quasar PSS J2322+1944 (z=4.12). These observations confirm that the molecular gas (CO) in the host galaxy of this quasar is lensed into a full Einstein ring, and reveal the internal dynamics of the molecular gas in this system. The ring has a diameter of ~1.5", and thus is sampled over ~20 resolution elements by our observations. Through a model-based lens inversion, we recover the velocity gradient of the molecular reservoir in the quasar host galaxy of PSS J2322+1944. The Einstein ring lens configuration enables us to zoom in on the emission and to resolve scales down to ~1 kpc. From the model-reconstructed source, we find that the molecular gas is distributed on a scale of 5 kpc, and has a total mass of M(H2)=1.7 x 10^10 M_sun. A basic estimate of the dynamical mass gives M_dyn = 4.4 x 10^10 (sin i)^-2 M_sun, that is, only ~2.5 times the molecular gas mass, and ~30 times the black hole mass (assuming that the dynamical structure is highly inclined). The lens configuration also allows us to tie the optical emission to the molecular gas emission, which suggests that the active galactic nucleus (AGN) does reside within, but not close to the center of the molecular reservoir. Together with the (at least partially) disturbed structure of the CO, this suggests that the system is interacting. Such an interaction, possibly caused by a major `wet' merger, may be responsible for both feeding the quasar and fueling the massive starburst of 680 M_sun/yr in this system, in agreement with recently suggested scenarios of quasar activity and galaxy assembly in the early universe.

4 citations

Journal ArticleDOI
TL;DR: In this paper, the kinematics of 27 z~6 quasar host galaxies observed in [CII]-158 micron emission with the Atacama Large Millimeter/sub-millimeter Array at a resolution of 0.25 was explored.
Abstract: We explore the kinematics of 27 z~6 quasar host galaxies observed in [CII]-158 micron ([CII]) emission with the Atacama Large Millimeter/sub-millimeter Array at a resolution of ~0.25''. We find that nine of the galaxies show disturbed [CII] emission, either due to a close companion galaxy or recent merger. Ten galaxies have smooth velocity gradients consistent with the emission arising from a gaseous disk. The remaining eight quasar host galaxies show no velocity gradient, suggesting that the gas in these systems is dispersion-dominated. All galaxies show high velocity dispersions with a mean of 129+-10 km/s. To provide an estimate of the dynamical mass within twice the half-light radius of the quasar host galaxy, we model the kinematics of the [CII] emission line using our publicly available kinematic fitting code, qubefit. This results in a mean dynamical mass of 5.0+-0.8(+-3.5) x 10^10 Msun. Comparison between the dynamical mass and the mass of the supermassive black hole reveals that the sample falls above the locally derived bulge mass--black hole mass relation at 2.4sigma significance. This result is robust even if we account for the large systematic uncertainties. Using several different estimators for the molecular mass, we estimate a gas mass fraction of >10%, indicating gas makes up a large fraction of the baryonic mass of z~6 quasar host galaxies. Finally, we speculate that the large variety in [CII] kinematics is an indication that gas accretion onto z~6 super massive black holes is not caused by a single precipitating factor.

4 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The second Gaia data release, Gaia DR2 as mentioned in this paper, is a major advance with respect to Gaia DR1 in terms of completeness, performance, and richness of the data products.
Abstract: Context. We present the second Gaia data release, Gaia DR2, consisting of astrometry, photometry, radial velocities, and information on astrophysical parameters and variability, for sources brighter than magnitude 21. In addition epoch astrometry and photometry are provided for a modest sample of minor planets in the solar system. Aims: A summary of the contents of Gaia DR2 is presented, accompanied by a discussion on the differences with respect to Gaia DR1 and an overview of the main limitations which are still present in the survey. Recommendations are made on the responsible use of Gaia DR2 results. Methods: The raw data collected with the Gaia instruments during the first 22 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into this second data release, which represents a major advance with respect to Gaia DR1 in terms of completeness, performance, and richness of the data products. Results: Gaia DR2 contains celestial positions and the apparent brightness in G for approximately 1.7 billion sources. For 1.3 billion of those sources, parallaxes and proper motions are in addition available. The sample of sources for which variability information is provided is expanded to 0.5 million stars. This data release contains four new elements: broad-band colour information in the form of the apparent brightness in the GBP (330-680 nm) and GRP (630-1050 nm) bands is available for 1.4 billion sources; median radial velocities for some 7 million sources are presented; for between 77 and 161 million sources estimates are provided of the stellar effective temperature, extinction, reddening, and radius and luminosity; and for a pre-selected list of 14 000 minor planets in the solar system epoch astrometry and photometry are presented. Finally, Gaia DR2 also represents a new materialisation of the celestial reference frame in the optical, the Gaia-CRF2, which is the first optical reference frame based solely on extragalactic sources. There are notable changes in the photometric system and the catalogue source list with respect to Gaia DR1, and we stress the need to consider the two data releases as independent. Conclusions: Gaia DR2 represents a major achievement for the Gaia mission, delivering on the long standing promise to provide parallaxes and proper motions for over 1 billion stars, and representing a first step in the availability of complementary radial velocity and source astrophysical information for a sample of stars in the Gaia survey which covers a very substantial fraction of the volume of our galaxy.

8,308 citations

Journal ArticleDOI
01 Dec 2010
TL;DR: The Wide-field Infrared Survey Explorer (WISE) is mapping the whole sky following its launch on 14 December 2009 and completed its first full coverage of the sky on July 17 as discussed by the authors.
Abstract: The all sky surveys done by the Palomar Observatory Schmidt, the European Southern Observatory Schmidt, and the United Kingdom Schmidt, the InfraRed Astronomical Satellite and the 2 Micron All Sky Survey have proven to be extremely useful tools for astronomy with value that lasts for decades. The Wide-field Infrared Survey Explorer is mapping the whole sky following its launch on 14 December 2009. WISE began surveying the sky on 14 Jan 2010 and completed its first full coverage of the sky on July 17. The survey will continue to cover the sky a second time until the cryogen is exhausted (anticipated in November 2010). WISE is achieving 5 sigma point source sensitivities better than 0.08, 0.11, 1 and 6 mJy in unconfused regions on the ecliptic in bands centered at wavelengths of 3.4, 4.6, 12 and 22 micrometers. Sensitivity improves toward the ecliptic poles due to denser coverage and lower zodiacal background. The angular resolution is 6.1", 6.4", 6.5" and 12.0" at 3.4, 4.6, 12 and 22 micrometers, and the astrometric precision for high SNR sources is better than 0.15".

7,182 citations

Journal ArticleDOI
Nabila Aghanim1, Yashar Akrami2, Yashar Akrami3, Yashar Akrami4  +229 moreInstitutions (70)
TL;DR: In this article, the authors present cosmological parameter results from the full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction.
Abstract: We present cosmological parameter results from the final full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction Compared to the 2015 results, improved measurements of large-scale polarization allow the reionization optical depth to be measured with higher precision, leading to significant gains in the precision of other correlated parameters Improved modelling of the small-scale polarization leads to more robust constraints on manyparameters,withresidualmodellinguncertaintiesestimatedtoaffectthemonlyatthe05σlevelWefindgoodconsistencywiththestandard spatially-flat6-parameter ΛCDMcosmologyhavingapower-lawspectrumofadiabaticscalarperturbations(denoted“base ΛCDM”inthispaper), from polarization, temperature, and lensing, separately and in combination A combined analysis gives dark matter density Ωch2 = 0120±0001, baryon density Ωbh2 = 00224±00001, scalar spectral index ns = 0965±0004, and optical depth τ = 0054±0007 (in this abstract we quote 68% confidence regions on measured parameters and 95% on upper limits) The angular acoustic scale is measured to 003% precision, with 100θ∗ = 10411±00003Theseresultsareonlyweaklydependentonthecosmologicalmodelandremainstable,withsomewhatincreasederrors, in many commonly considered extensions Assuming the base-ΛCDM cosmology, the inferred (model-dependent) late-Universe parameters are: HubbleconstantH0 = (674±05)kms−1Mpc−1;matterdensityparameterΩm = 0315±0007;andmatterfluctuationamplitudeσ8 = 0811±0006 We find no compelling evidence for extensions to the base-ΛCDM model Combining with baryon acoustic oscillation (BAO) measurements (and consideringsingle-parameterextensions)weconstraintheeffectiveextrarelativisticdegreesoffreedomtobe Neff = 299±017,inagreementwith the Standard Model prediction Neff = 3046, and find that the neutrino mass is tightly constrained toPmν < 012 eV The CMB spectra continue to prefer higher lensing amplitudesthan predicted in base ΛCDM at over 2σ, which pulls some parameters that affect thelensing amplitude away from the ΛCDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAOdataThejointconstraintwithBAOmeasurementsonspatialcurvatureisconsistentwithaflatuniverse, ΩK = 0001±0002Alsocombining with Type Ia supernovae (SNe), the dark-energy equation of state parameter is measured to be w0 = −103±003, consistent with a cosmological constant We find no evidence for deviations from a purely power-law primordial spectrum, and combining with data from BAO, BICEP2, and Keck Array data, we place a limit on the tensor-to-scalar ratio r0002 < 006 Standard big-bang nucleosynthesis predictions for the helium and deuterium abundances for the base-ΛCDM cosmology are in excellent agreement with observations The Planck base-ΛCDM results are in good agreement with BAO, SNe, and some galaxy lensing observations, but in slight tension with the Dark Energy Survey’s combined-probe results including galaxy clustering (which prefers lower fluctuation amplitudes or matter density parameters), and in significant, 36σ, tension with local measurements of the Hubble constant (which prefer a higher value) Simple model extensions that can partially resolve these tensions are not favoured by the Planck data

4,688 citations

Journal ArticleDOI
TL;DR: Tests of general relativity at the post-Newtonian level have reached high precision, including the light deflection, the Shapiro time delay, the perihelion advance of Mercury, the Nordtvedt effect in lunar motion, and frame-dragging.
Abstract: The status of experimental tests of general relativity and of theoretical frameworks for analyzing them is reviewed and updated. Einstein’s equivalence principle (EEP) is well supported by experiments such as the Eotvos experiment, tests of local Lorentz invariance and clock experiments. Ongoing tests of EEP and of the inverse square law are searching for new interactions arising from unification or quantum gravity. Tests of general relativity at the post-Newtonian level have reached high precision, including the light deflection, the Shapiro time delay, the perihelion advance of Mercury, the Nordtvedt effect in lunar motion, and frame-dragging. Gravitational wave damping has been detected in an amount that agrees with general relativity to better than half a percent using the Hulse-Taylor binary pulsar, and a growing family of other binary pulsar systems is yielding new tests, especially of strong-field effects. Current and future tests of relativity will center on strong gravity and gravitational waves.

3,394 citations

Journal ArticleDOI
TL;DR: In this article, a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors.
Abstract: On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of $\sim$1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg$^2$ at a luminosity distance of $40^{+8}_{-8}$ Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Msun. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at $\sim$40 Mpc) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over $\sim$10 days. Following early non-detections, X-ray and radio emission were discovered at the transient's position $\sim$9 and $\sim$16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. (Abridged)

3,180 citations