scispace - formally typeset
Search or ask a question
Author

Fabian Walter

Bio: Fabian Walter is an academic researcher from Max Planck Society. The author has contributed to research in topics: Galaxy & Star formation. The author has an hindex of 146, co-authored 999 publications receiving 83016 citations. Previous affiliations of Fabian Walter include California Institute of Technology & University of Bonn.


Papers
More filters
Journal Article
TL;DR: In this article, the authors presented evidence for an expanding superbubble in M 82 (diameter: 130 pc, expansion velocity: 45 km s 1, mass: 8 10 6 M).
Abstract: We present evidence for an expanding superbubble in M 82 (diameter: 130 pc, expansion velocity: 45 km s 1 , mass: 8 10 6 M). It is seen in the 12 CO(J =1 ! 0), 12 CO(J =2 !1), 13 CO(J =1 !0) and C 18 O(J =1 !0) lines. The superbubble is centred around the most powerful su- pernova remnant, 41.9+58. The CO observations show that the molecular superbubble already broke out of the disk. This sce- nario is supported by ROSAT HRI observations which suggest that hot coronal gas originating from inside the shell is the main contributor to the diffuse X-ray outflow in M 82. We briefly discuss observations of the same region at other wavelengths (radio continuum, optical, Hi, X-rays, ionized gas). From our spectral line observations, we derive a kinematic age of about 10 6 years for the superbubble. Using simple theoretical models, the total energy needed for the creation of this superbubble is of order 2 10 54 ergs. The required energy input rate (0.001 SN yr 1 ) is reasonable given the high supernova (SN) rate of 0:1 SN yr 1 in the central part of M 82. As much as 10% of the energy needed to create the superbubble is still present in form of the kinetic energy of the expanding molecular shell. Of order 10% is conserved in the hot X-ray emitting gas emerging from the superbubble into the halo of M 82. This newly detected expanding molecular superbubble is believed to be powered by the same objects that also lie at the origin of the prominent X- ray outflow in M 82. It can therefore be used as an alternative tool to investigate the physical properties of these sources.

2 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used the new IRAM PdBI receivers at 350 GHz to map the 158 micron line in BRI 0952-0115, the host galaxy of a lensed quasar at z = 4.4.
Abstract: We present one of the first resolved maps of the [CII] 158 micron line, a powerful tracer of the star forming inter-stellar medium, at high redshift. We use the new IRAM PdBI receivers at 350 GHz to map this line in BRI 0952-0115, the host galaxy of a lensed quasar at z=4.4 previously found to be very bright in [CII] emission. The [CII] emission is clearly resolved and our data allow us to resolve two [CII] lensed images associated with the optical quasar images. We find that the star formation, as traced by [CII], is distributed over a region of ~ 1 kpc in size near the quasar nucleus, and we infer a star formation surface density >150 Msun/yr/kpc^2, similar to that observed in local ULIRGs. We also reveal another [CII] component, extended over ~ 12 kpc, and located at ~ 10 kpc from the quasar. We suggest that this component is a companion disk galaxy, in the process of merging with the quasar host, whose rotation field is distorted by the interaction with the quasar host, and where star formation, although intense, is more diffuse. These observations suggest that galaxy merging at high-z can enhance star formation at the same time in the form of more compact regions, in the vicinity of the accreting black hole, and in more extended star forming galaxies.

2 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported the detection of spatially resolved CO(1-0) emission in the z~3.4 submillimeter galaxies (SMGs) SMM J09431+4700 and SMMJ13120+4242, using the Expanded Very Large Array (EVLA).
Abstract: We report the detection of spatially resolved CO(1-0) emission in the z~3.4 submillimeter galaxies (SMGs) SMM J09431+4700 and SMM J13120+4242, using the Expanded Very Large Array (EVLA). SMM J09431+4700 is resolved into the two previously reported millimeter sources H6 and H7, separated by ~30kpc in projection. We derive CO(1-0) line luminosities of L'(CO 1-0) = (2.49+/-0.86) and (5.82+/-1.22) x 10^10 K km/s pc^2 for H6 and H7, and L'(CO 1-0) = (23.4+/-4.1) x 10^10 K km/s pc^2 for SMM J13120+4242. These are ~1.5-4.5x higher than what is expected from simple excitation modeling of higher-J CO lines, suggesting the presence of copious amounts of low-excitation gas. This is supported by the finding that the CO(1-0) line in SMM J13120+4242, the system with lowest CO excitation, appears to have a broader profile and more extended spatial structure than seen in higher-J CO lines (which is less prominently seen in SMM J09431+4700). Based on L'(CO 1-0) and excitation modeling, we find M_gas = 2.0-4.3 and 4.7-12.7 x 10^10 Msun for H6 and H7, and M_gas = 18.7-69.4 x 10^10 Msun for SMM J13120+4242. The observed CO(1-0) properties are consistent with the picture that SMM J09431+4700 represents an early-stage, gas-rich major merger, and that SMM J13120+4242 represents such a system in an advanced stage. This study thus highlights the importance of spatially and dynamically resolved CO(1-0) observations of SMGs to further understand the gas physics that drive star formation in these distant galaxies, which becomes possible only now that the EVLA rises to its full capabilities.

2 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the Herschel multi-band imaging of the Andromeda galaxy to analyze how dust heating occurs in the central regions of galaxy spheroids that are essentially devoid of young stars.
Abstract: We use new Herschel multi-band imaging of the Andromeda galaxy to analyze how dust heating occurs in the central regions of galaxy spheroids that are essentially devoid of young stars. We construct a dust temperature map of M31 through fitting modified blackbody SEDs to the Herschel data, and find that the temperature within 2 kpc rises strongly from the mean value in the disk of 17 pm 1K to \sim35K at the centre. UV to near-IR imaging of the central few kpc shows directly the absence of young stellar populations, delineates the radial profile of the stellar density, and demonstrates that even the near-UV dust extinction is optically thin in M31's bulge. This allows the direct calculation of the stellar radiation heating in the bulge, U\ast(r), as a function of radius. The increasing temperature profile in the centre matches that expected from the stellar heating, i.e. that the dust heating and cooling rates track each other over nearly two orders of magnitude in U\ast. The modelled dust heating is in excess of the observed dust temperatures, suggesting that it is more than sufficient to explain the observed IR emission. Together with the wavelength dependent absorption cross section of the dust, this demonstrates directly that it is the optical, not UV, radiation that sets the heating rate. This analysis shows that neither young stellar populations nor stellar near-UV radiation are necessary to heat dust to warm temperatures in galaxy spheroids. Rather, it is the high densities of Gyr-old stellar populations that provide a sufficiently strong diffuse radiation field to heat the dust. To the extent which these results pertain to the tenuous dust found in the centres of early-type galaxies remains yet to be explored.

2 citations

Journal ArticleDOI
01 Jun 2004
TL;DR: In this article, high resolution interferometric observations of the cool atomic and cold molecular ISM of the TDG candidate Arp 245N, an object resembling a dwarf galaxy in the northern tidal tail of the interacting system NGC 2992/3.
Abstract: We present high resolution interferometric observations of the cool atomic and cold molecular ISM of the TDG candidate Arp 245N, an object resembling a dwarf galaxy in the northern tidal tail of the interacting system NGC 2992/3. We observed the HI line with the NRAO VLA and the CO(1-->0) transition with the OVRO millimeter interferometer at 5''-6'' angular resolution (750 pc linear resolution). These datacubes offer the required spatial and velocity resolution to determine whether the mass concentration near the tip of the tail is a genuine feature, and hence a good TDG candidate, or an artefact caused by a fortuitous alignment of our line of sight with the direction of the tail. A preliminary analysis seems to confirm that Arp 245N is a self-gravitating entity.

2 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The second Gaia data release, Gaia DR2 as mentioned in this paper, is a major advance with respect to Gaia DR1 in terms of completeness, performance, and richness of the data products.
Abstract: Context. We present the second Gaia data release, Gaia DR2, consisting of astrometry, photometry, radial velocities, and information on astrophysical parameters and variability, for sources brighter than magnitude 21. In addition epoch astrometry and photometry are provided for a modest sample of minor planets in the solar system. Aims: A summary of the contents of Gaia DR2 is presented, accompanied by a discussion on the differences with respect to Gaia DR1 and an overview of the main limitations which are still present in the survey. Recommendations are made on the responsible use of Gaia DR2 results. Methods: The raw data collected with the Gaia instruments during the first 22 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into this second data release, which represents a major advance with respect to Gaia DR1 in terms of completeness, performance, and richness of the data products. Results: Gaia DR2 contains celestial positions and the apparent brightness in G for approximately 1.7 billion sources. For 1.3 billion of those sources, parallaxes and proper motions are in addition available. The sample of sources for which variability information is provided is expanded to 0.5 million stars. This data release contains four new elements: broad-band colour information in the form of the apparent brightness in the GBP (330-680 nm) and GRP (630-1050 nm) bands is available for 1.4 billion sources; median radial velocities for some 7 million sources are presented; for between 77 and 161 million sources estimates are provided of the stellar effective temperature, extinction, reddening, and radius and luminosity; and for a pre-selected list of 14 000 minor planets in the solar system epoch astrometry and photometry are presented. Finally, Gaia DR2 also represents a new materialisation of the celestial reference frame in the optical, the Gaia-CRF2, which is the first optical reference frame based solely on extragalactic sources. There are notable changes in the photometric system and the catalogue source list with respect to Gaia DR1, and we stress the need to consider the two data releases as independent. Conclusions: Gaia DR2 represents a major achievement for the Gaia mission, delivering on the long standing promise to provide parallaxes and proper motions for over 1 billion stars, and representing a first step in the availability of complementary radial velocity and source astrophysical information for a sample of stars in the Gaia survey which covers a very substantial fraction of the volume of our galaxy.

8,308 citations

Journal ArticleDOI
01 Dec 2010
TL;DR: The Wide-field Infrared Survey Explorer (WISE) is mapping the whole sky following its launch on 14 December 2009 and completed its first full coverage of the sky on July 17 as discussed by the authors.
Abstract: The all sky surveys done by the Palomar Observatory Schmidt, the European Southern Observatory Schmidt, and the United Kingdom Schmidt, the InfraRed Astronomical Satellite and the 2 Micron All Sky Survey have proven to be extremely useful tools for astronomy with value that lasts for decades. The Wide-field Infrared Survey Explorer is mapping the whole sky following its launch on 14 December 2009. WISE began surveying the sky on 14 Jan 2010 and completed its first full coverage of the sky on July 17. The survey will continue to cover the sky a second time until the cryogen is exhausted (anticipated in November 2010). WISE is achieving 5 sigma point source sensitivities better than 0.08, 0.11, 1 and 6 mJy in unconfused regions on the ecliptic in bands centered at wavelengths of 3.4, 4.6, 12 and 22 micrometers. Sensitivity improves toward the ecliptic poles due to denser coverage and lower zodiacal background. The angular resolution is 6.1", 6.4", 6.5" and 12.0" at 3.4, 4.6, 12 and 22 micrometers, and the astrometric precision for high SNR sources is better than 0.15".

7,182 citations

Journal ArticleDOI
Nabila Aghanim1, Yashar Akrami2, Yashar Akrami3, Yashar Akrami4  +229 moreInstitutions (70)
TL;DR: In this article, the authors present cosmological parameter results from the full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction.
Abstract: We present cosmological parameter results from the final full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction Compared to the 2015 results, improved measurements of large-scale polarization allow the reionization optical depth to be measured with higher precision, leading to significant gains in the precision of other correlated parameters Improved modelling of the small-scale polarization leads to more robust constraints on manyparameters,withresidualmodellinguncertaintiesestimatedtoaffectthemonlyatthe05σlevelWefindgoodconsistencywiththestandard spatially-flat6-parameter ΛCDMcosmologyhavingapower-lawspectrumofadiabaticscalarperturbations(denoted“base ΛCDM”inthispaper), from polarization, temperature, and lensing, separately and in combination A combined analysis gives dark matter density Ωch2 = 0120±0001, baryon density Ωbh2 = 00224±00001, scalar spectral index ns = 0965±0004, and optical depth τ = 0054±0007 (in this abstract we quote 68% confidence regions on measured parameters and 95% on upper limits) The angular acoustic scale is measured to 003% precision, with 100θ∗ = 10411±00003Theseresultsareonlyweaklydependentonthecosmologicalmodelandremainstable,withsomewhatincreasederrors, in many commonly considered extensions Assuming the base-ΛCDM cosmology, the inferred (model-dependent) late-Universe parameters are: HubbleconstantH0 = (674±05)kms−1Mpc−1;matterdensityparameterΩm = 0315±0007;andmatterfluctuationamplitudeσ8 = 0811±0006 We find no compelling evidence for extensions to the base-ΛCDM model Combining with baryon acoustic oscillation (BAO) measurements (and consideringsingle-parameterextensions)weconstraintheeffectiveextrarelativisticdegreesoffreedomtobe Neff = 299±017,inagreementwith the Standard Model prediction Neff = 3046, and find that the neutrino mass is tightly constrained toPmν < 012 eV The CMB spectra continue to prefer higher lensing amplitudesthan predicted in base ΛCDM at over 2σ, which pulls some parameters that affect thelensing amplitude away from the ΛCDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAOdataThejointconstraintwithBAOmeasurementsonspatialcurvatureisconsistentwithaflatuniverse, ΩK = 0001±0002Alsocombining with Type Ia supernovae (SNe), the dark-energy equation of state parameter is measured to be w0 = −103±003, consistent with a cosmological constant We find no evidence for deviations from a purely power-law primordial spectrum, and combining with data from BAO, BICEP2, and Keck Array data, we place a limit on the tensor-to-scalar ratio r0002 < 006 Standard big-bang nucleosynthesis predictions for the helium and deuterium abundances for the base-ΛCDM cosmology are in excellent agreement with observations The Planck base-ΛCDM results are in good agreement with BAO, SNe, and some galaxy lensing observations, but in slight tension with the Dark Energy Survey’s combined-probe results including galaxy clustering (which prefers lower fluctuation amplitudes or matter density parameters), and in significant, 36σ, tension with local measurements of the Hubble constant (which prefer a higher value) Simple model extensions that can partially resolve these tensions are not favoured by the Planck data

4,688 citations

Journal ArticleDOI
TL;DR: Tests of general relativity at the post-Newtonian level have reached high precision, including the light deflection, the Shapiro time delay, the perihelion advance of Mercury, the Nordtvedt effect in lunar motion, and frame-dragging.
Abstract: The status of experimental tests of general relativity and of theoretical frameworks for analyzing them is reviewed and updated. Einstein’s equivalence principle (EEP) is well supported by experiments such as the Eotvos experiment, tests of local Lorentz invariance and clock experiments. Ongoing tests of EEP and of the inverse square law are searching for new interactions arising from unification or quantum gravity. Tests of general relativity at the post-Newtonian level have reached high precision, including the light deflection, the Shapiro time delay, the perihelion advance of Mercury, the Nordtvedt effect in lunar motion, and frame-dragging. Gravitational wave damping has been detected in an amount that agrees with general relativity to better than half a percent using the Hulse-Taylor binary pulsar, and a growing family of other binary pulsar systems is yielding new tests, especially of strong-field effects. Current and future tests of relativity will center on strong gravity and gravitational waves.

3,394 citations

Journal ArticleDOI
TL;DR: In this article, a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors.
Abstract: On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of $\sim$1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg$^2$ at a luminosity distance of $40^{+8}_{-8}$ Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Msun. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at $\sim$40 Mpc) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over $\sim$10 days. Following early non-detections, X-ray and radio emission were discovered at the transient's position $\sim$9 and $\sim$16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. (Abridged)

3,180 citations